
Pleiades: Interactive Composing Tools for Vega-Lite Charts

Chanwut Kittivorawong, Manesh Jhawar, Sorawee Porncharoenwase

Abstract— Vega-Lite [1] is a high-level grammar which is easy to understand. Naturally, the user base of Vega-Lite ranges from
beginners to experts in the field of visualization. Although users with less JSON experience have no trouble working with most of the
features of Vega-lite, composing different views together has a sharp learning curve. View composition requires a good understanding
of tree structure since different views can be nested inside each other to create more complex views.
Pleiades provides a graphical user interface for users to compose Vega-Lite charts. The users can add charts that they want to work
with the software, then use them to compose complex views. The operations they can perform are layer, concat, repeat, and facet.
Using these four techniques, the users can keep on composing and constructing complex visualizations. Pleiades provides the users
with warnings and restrictions when composing charts that would be incompatible. We provide this level of abstraction to help users
focus more on the visualization and less about the nitty-gritty details of Vega-lite.

Index Terms—Data Visualization, interactive system, Vega-Lite

1 INTRODUCTION

While working with Vega-Lite over the quarter, we realized that com-
posing different charts had a learning curve. Users had to remember
graph and data compatibility, code it in JSON, and if it was a complex
composition, the JSON ended up being very nested and complicated.
However, composing different graphs together is one of the heavily
used features in the field of visualization, and having to deal with so
much difficulty mentioned above seems like a hindrance to learning
and visualizing data effortlessly. When we think about the users of
Vega-lite, we have a predefined notion that the users are well learned
in the field of data and computer science. However, with the recent
growth and popularity in the data world, the user base for Vega-lite,
now also comprises of entry-level data and visualization enthusiast and
folks just interested in visualization without any coding background.
Naturally, for beginners, working with heavily nested JSON specs can
be dreadful.

Although Vega-Lite aims to be easy to use for users with a non-
computer science background, view composition is one of the aspects
that can be difficult to work with. Since Vega-Lite specification is in
JSON format, when users want to nest view composition, inner speci-
fications have to be nested heavily. However, mapping from the design
in the user’s mind to JSON nested structure is hard because JSON does
not well represent the layout of the composite views.

Furthermore, when users design composite views, it makes sense
for users to build composite views starting from a unit spec. Then,
they can add more views and is able to experiment with the design by
adding in and taking out views. With the nature of JSON, however,
when working with Vega-Lite, specification is created from the outer-
most composite view and add inner views later. Additionally, when
users need to make changes to the layout of composite views, they
have to make changes to the JSON specification. With this, the users
need to focus on how to implement the JSON, which would distract
the focus of the user on the design.

Pleiades is a toolkit for Vega-lite that gives the user the ability to
compose charts without having to deal with remembering the rules of
composition or working with the JSON. We provide a Graphical User
Interface for users to add different pre-existing Vega-Lite specs and
they use them to create complex compositions. We provide four op-
tions for composition: Layer, Concat, Repeat, and Facet. We also pro-

• Chanwut Kittivorawong is an undergraduate Computer Science student at
the University of Washington. E-mail: chanwutk@cs.washington.edu.

• Manesh Jhawar is an undergraduate Computer Science student at the
University of Washington. E-mail: mj06@cs.washington.edu.

• Sorawee Porncharoenwase is a graduate Computer Science student at the
University of Washington. E-mail: sorawee@cs.washington.edu.

vide the users with an abstraction that handles all the rules for compo-
sition, by simply disabling the options when they cannot be performed.
Pleiades has resulted in not only providing an efficient and easy way
to create compositions but also enables the user to play with the data
more efficiently.

2 RELATED WORK

2.1 Vega-Lite: A Grammar of Interactive Graphics

Vega-Lite is a high-level grammar for creating visualizations. The
grammar abstracts away the low-level details of mapping data from
dataset to the actual pixel of the working screen.

Pleiades is built on top of Vega-Lite to further abstract away the
implementation details of view composition using JSON. In this work,
we assume that users are already familiar with basic Vega-Lite that
they are comfortable working with unit spec using Vega-Lite. Having
all the unit specs the users need to compose, users can use Pleiades to
compose them with the interactive GUI.

3 METHODS

3.1 User Interface

To work with Pleiades, users can firstly add Vega-Lite specs that they
are working with to the left sidebar by clicking “NEW SPEC”, then
type in the Vega-Lite spec, and then save.

To create view composition, users can select view(s) as operand(s)
and then apply an operation by clicking one of the operations in the
operations bar on the top of the application. It will perform the op-
eration from the selected view in the sidebar to the selected view in
the working area. Users are allowed to select up to one view from
the sidebar and up to one view from the working area to perform an
operation.

To create more complex view composition, users can perform op-
erations to the view in the working area. For example, a layered view
can then be horizontally concatenated with another view. Then, inside
the concatenated views, the right view can be selected to perform the
repeat operation.

To edit a composed view, users can select a view in the working
area. Then, click “EDIT” configure the properties of the selected view.

Users can always redo or undo any action if they make mistakes by
clicking “UNDO” or “REDO”.

Pleiades also provides Inner View Navigator that shows the inner
view of repeat or facet view. Repeat and facet operation produces a
view containing replication of the inner view. When selecting a repeat
or facet view, the Inner View Navigator shows the original view before
the replication. This functionality is useful when the original view is
also a composite view. Then, we can select the inner view to edit it
from the Inner View Navigator.



Finally, when the user is done with composing view, they can export
the view in the working area to Vega-Lite JSON file to use normally
with any Vega-Lite compiler.

3.2 Operations for View Composition
There are 5 main operations users can do to compose views

3.2.1 Place/Replace
When the working area is empty, user can select a view in the sidebar.
Then click “PLACE” to place the view to the working area. When
the working area is not empty, the same button’s text changes to “RE-
PLACE”. Users can click this button when there are one selected view
from the sidebar and one selected view from the working area. Then,
the selected view in the working area is replaced with the selceted view
in the sidebar.

Fig. 1. Before and after replacing the selcted bar chart with the selected
scatter plot

3.2.2 Layer
Users can perform layering when there are one selected view from the
sidebar and one selected view from the working area. When clicking
“LAYER”, the users are prompted with an option to layer the view
in the sidebar over or under the view in the working area. Then, the
selected view in the working area is layered with the selected view in
the sidebar.

Validation Layering in Pleiades has some restrictions. First, both
operands for layering has to be either unit views or layer views because
Vega-Lite only allows layering unit and layer specs. Pleiades also per-
form an additional check axes compatibility of operands. Then, It will
give a warning in the operation button to let the user know that layering
can be done between these two operands but not fully compatible.

Editing Users can edit a layer view by selecting the view in the
working area. Then, click “EDIT”. The supported editing functionali-
ties for layer view are to remove inner views and rearrange the layering
order.

Fig. 2. Before and after layering the selcted error-band chart with the
selected scatter plot

Fig. 3. Warning when axes of layering views are not fully compatible
(between the bar chart and the scatter plot)

3.2.3 Concatenation
The user can perform concatenation when there is one selected view
from the sidebar and one selected view from the working area. When
clicking “CONCAT”, the user is prompted with an option to concate-
nate the selected view in the sidebar to the left, right, top, or bottom of
the selected view in the working area.

Editing Users can edit a concat view by selecting the view in the
working area. Then, click “EDIT”. In the edit popup window, the
user can rearrange the order of concatenation, remove inner views,
and switch between vertical and horizontal concatenation.

Fig. 4. Before and after concatenating the selcted bar chart with the
selected scatter plot

3.2.4 Facet
The user can perform faceting when there is one selected view from
the working area. When clicking “FACET”, a popup window will
show prompting the user to select, for each repeating direction (row or
column or both), a field and its type to facet. Note that facet-ing will be
applied to all inner views of the operand. Due to our time constraints,
selecting a subset of inner views to only perform facet on the set of
inner views is unavailable right now.

Validation Since parameters for facet are fields, facet-ing depends
on the dataset. Thus, “FACET” button will show a warning signal
when the operand has multiple data source. For instance, selecting
a concat view that contains a chart from cars dataset and population
dataset will result in having the warning signal in the “FACET” button.

Editing There are two methods of modifying a facet view. Users
can edit the properties of a facet view by selecting the editing view.
Then, click “EDIT”. A popup window will show. Users can change
the facet parameters for the facet view. An option for decompose facet
view is also provided to replace the current facet view with its inner
view (the original view). Another method for modifying a facet view is
to modify the inner view of the facet view in the Inner View Navigator.
When selecting a facet view, the inner view of the facet view will show



up in the Inner View Navigator. Then, the user can perform modifica-
tion to the view in Inner View Navigator. This modification, however,
does not perform any validation on the datasets, due to the time con-
straints. If a new view is added and might break the well-formedness
of the state. In practice, this is not a problem because Pleiades sup-
ports undo and redo, so users can always go back to the previous state
when the output is invalid resulting from this modification.

Fig. 5. Before and after facet-ing the selected scatter plot with “Origin”
as the field for facet-ing column.

Fig. 6. Warning on repeat and facet when not every dataset in the se-
lected view are from the same source.

3.2.5 Repeat

Every interaction in repeat operation works the same way as it would
work in facet operation with the exception of the operation button to
“REPEAT” and the popup window to configure parameter to perform
repeat. The popup window will prompt the user to input, for each
repeating direction (row or column or both), a list of fields to repeat
and encoding channel to repeat. Repeating will also be applied to all
inner views of the operand as same as faceting.

Validation Repeat operation performs the same validation as the
facet operation does.

Editing Users can edit repeat view with the same methods as edit-
ing facet view.

3.3 Well-Formedness

As mentioned, Pleiades will restrict users from performing some oper-
ations that make views incompatible. More broadly, our design goal is
that the working area should be well-formed throughout user interac-
tions, where the working area is well-formed if it can be exported into
a Vega-Lite spec. This might sound difficult to achieve, but the induc-
tion principle gives us a way to decompose the goal into subtasks: we

Fig. 7. Before and after repeating the selected scatter plot with “Dis-
placement” and “Cylinders” as the list of fields for repeat column on
x-axis.

only need to make sure that every Pleiades’ operation preserves well-
formedness. As the initial view is trivially well-formed, by the induc-
tion principle, it follows that the working area will be well-formed at
any time.

The benefit of ensuring well-formedness at every step is that users
will never need to correct a mistake. This contrasts with a tool that
allows an ill-formed state because users then need to find mistakes,
which could potentially be anywhere, and then fix them to make the
state become well-formed. Without a good error reporting system that
accurately guides users to fix problems, this process would be very
time consuming and frustrating to users. A good error reporting sys-
tem, however, is notoriously difficult to achieve. By ensuring well-
formedness at every step, we can greatly simplify the system while
providing good user experience.

To implement well-formedness preserving operations, we perform
speculation for each operation to validate if the operation should be
permitted or not. There are two design decisions that we could make
here: one is allowing users to attempt the operation, which will im-
mediately fail, and the other is disallowing users from attempting the
operation in the first place. The first approach has the advantage that
the error messages could be very descriptive, allowing users to under-
stand why the operation is not allowed. However, this comes with the
cost of a more confusing user interface. We thus opt for the second
approach which disallows users from attempting the operation in the
first place. To mitigate the problem that users might not understand
why an operation is not allowed, we additionally insert short text to
explain why the operation is disabled for some potentially confusing
operations. For example, when the user selects operands to layer, if
one of the operands is not a unit spec or layer spec, the “LAYER” but-
ton is disabled. And if both operands do not have compatible axes, the
“LAYER” button will show a warning sign with a tooltip that the axes
are not compatible.

In practice, the above approach is proven to be too rigid. One ex-
ample of unintended consequences of the above approach is that users
can’t edit any specification at all, because, during the editing, it’s very
likely that the text won’t be able to parse correctly into the JSON for-
mat. We thus separate operations into macro-operations and micro-
operations, where a macro-operation is a group of micro-operations.
We then relax our goal to only apply to macro-operations. That is, ev-
ery macro-operation preserves well-formedness. For micro-operations
that does not preserve well-formedness, the operation won’t affect the
working area directly. Rather, it is confined inside a dialog box so that
a batch of micro-operations can be readily reverted.

3.4 Syntax Tree

The state of the composite view for the output in the working area is
internally stored as a tree. Each node of the tree represents a view
composition, which has different properties depending on the type of
composition.



3.4.1 UnitView
contains a Vega-Lite specification. However, Pleiades does not per-
form any validation to check if the specification is actually a Vega-
Lite’s UnitSpec. So, UnitView can be layer, concat, repeat, or facet
spec but cannot be modified by Pleiades’ operations.

3.4.2 LayerView
has a list of children nodes representing inner views that are being
layered. The children are only allowed to be UnitView or LayerView.
More specifically, the specification of the UnitView child has also to
be either unit or layer spec as Vega-Lite only allows layering layer and
unit specs.

3.4.3 ConcatView
has a list of children node representing inner views that are being con-
catenated and a type of concatenation to be either horizontal or vertical
concatenation. The children of ConcatView can be any type of View.

3.4.4 FacetView
has one inner view and facet properties, which contains field and type
of row facet and/or field and type of column facet. The inner view can
be any type of Views. All the datasets in the inner view should come
from the same source if the inner view is a composite view. Although
Pleiades does not prevent users from facet-ing View that contains mul-
tiple data sources, it gives a warning to the users that the datasets are
not compatible.

3.4.5 RepeatView
has one inner view and repeat properties, which contains a list of fields
and encoding channel of row repeat and/or a list of fields and encoding
channel of column repeat. Everything else of RepeatView is the same
as FacetView.

The benefit of syntax tree With the concept of syntax tree, inner
views can be located to modify easily. When the working view is out-
put to the working area, it can be rendered recursively through each
node in the tree. This recursive rendering allows us to render inner
views as separate views from the outer view. For example, when ren-
dering concat view, the inner views are rendered separately in a way
that users can select either the inner view or the whole concat view.

3.5 Data Pulling
In facet and repeat spec, data must be at the topmost level of the output
JSON spec. When RepeatView or FacetView is exported to JSON,
Pleiades pull out all the data source in every children view of the inner
view to the top level. If there is more than one distinct data source,
Pleiades will use the first one it encounters by pre-order tree traversal.
Pleiades also uses a similar method to exhaustively search for every
data source in the inner views of an operand to validate if there should
be a warning shown for the current operand for facet/repeat.

4 RESULTS

To evaluate our system, we perform a case study aiming to answer the
following questions:

• How easy is it to use Pleiades?

• Does Pleiades allow effective view composition?

For the question how easy it is to use Pleiades, two participants of
the case study report back that the tool is mostly easy to use. They
wish that the tool provides more visual cues and that they prefer drag
and drop to operand/operator selection, however. Some of these sug-
gestions are already incorporated into the final version of the tool.

For the question whether Pleiades allows effective view composi-
tion, the participants’ feedback is highly positive, stating that charts
can be composited in an intuitive way and visually responsive.

During our poster presentation, we additionally asked a lot of our
peers to try out our application and compare their workflow to that

when they used the Vega-Lite API along with a JSON spec. The feed-
back is similar to what we have seen in the case study.

Based on these results, we conclude that Pleiades eases beginners to
develop composite charts, save time for users, ease data-exploration,
and act as a support toolkit for education.

5 DISCUSSION

As we expected, the results show that Pleiades gives users a better un-
derstanding and ease them at composing different charts and see what
fits the best. The key idea behind why Pleiades makes composing
charts easier and more intuitive is because the process allows users to
compose small charts and rearrange them into a bigger chart. We call
this approach bottom-up. This contrasts with Vega-lite’s top-down ap-
proach which demands users to know the layout of the entire structure
already beforehand and hence is very rigid and inflexible. Also, the
graphical user interface provided users with a smoother way to com-
pose charts, than to write nested JSON specs.

One interesting result we found was that the ability to perform the
four operations gave users a better understanding of these operations
and how to properly use them. The validation steps, along with the er-
ror message that Pleiades provides helps users to understand what they
are doing wrong, helping them in their education about visualization
in general.

In terms of exploring data, the time it takes to compose different
charts and see find useful results, went down by a lot because of the
high-level of interactivity provided. Users don’t have to worry about
updating JSON code for every small change in their chart. Moreover,
a bad layout could be a hindrance that shows interesting trends in a
chart. Our tool which allows users to experiment with composition
easily thus helps with data exploration too.

6 FUTURE WORK

We are currently working on extending our software to perform a bet-
ter validation of every operation. This validation is important for the
software because the software can then maintain the well-formedness
of the output at every state after every operation. In the current build
of the software, we decided to left out some validations due to the time
constraints. However, in the real scenario, not validating everything is
not a problem since our software support undo and redo that users can
always reverse back to the previous state.

As observed from users using Pleiades, users try dragging view to
the main view first when first trying the software. As an extension to
Pleiades, we are looking forward to supporting dragging and dropping
in the software to provide a more natural interaction to the users.

When adding a new spec to the sidebar in the software, Pleiades
interpret the new View as a UnitView regardless of its actual composite
type. While this does not create a problem in practice, the rendered
view is always static. For instance, the inner views of concat spec that
is added by “NEW SPEC” are not selectable by users, and cannot be
edited using the “EDIT” button. Our future work for addressing this
issue is that we would incorporate a parser that parses new specs to
syntax tree of composite views so that all the functionality is supported
for the composite views added by users.

One another useful feature to have in the popup menu of facet and
repeat is to have an autosuggestion to suggest field names to perform
facet and repeat. This can be done since we know the base spec of
the view to facet. Therefore, we can get all the field names from the
dataset in the specification.

REFERENCES

[1] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-lite:
A grammar of interactive graphics. IEEE Trans. Visualization & Comp.
Graphics (Proc. InfoVis), 2017.


	Introduction
	Related Work
	Vega-Lite: A Grammar of Interactive Graphics

	Methods
	User Interface
	Operations for View Composition
	Place/Replace
	Layer
	Concatenation
	Facet
	Repeat

	Well-Formedness
	Syntax Tree
	UnitView
	LayerView
	ConcatView
	FacetView
	RepeatView

	Data Pulling

	Results
	Discussion
	Future Work

