
GROUPWARE AND SOCIAL
DYNAMICS: EIGHT CHALLENGES

FOR DEVELOPERS

Jonathan Grudin
Information and Computer Science Department

University of California, Irvine
Irvine, CA 92697-3425

(714) 824-8674
fax: (714) 824-4056

email: grudin@ics.uci.edu

Computer support has focused on organizations and
individuals. Groups are different. Repeated, expensive
groupware failures result from not meeting the challenges in
design and evaluation that arise from these differences.

THE ORIGINS OF GROUPWARE AND ITS
CHALLENGES

Many expensive failures in developing and marketing
software to support groups are not due to technical
problems. They result from not understanding the unique
demands that this class of software imposes on developers
and users. This article briefly outlines the origins of
groupware, describes eight specific problem areas, and
finally examines groupware successes in search of better
approaches to supporting work in group settings.

Desktop conferencing, videoconferencing, co-authoring
features and applications, electronic mail and bulletin
boards, meeting support systems, voice applications,
workflow systems, and group calendars are key examples of
groupware. Labels vary: groupware, collaborative
computing, workgroup computing, multi-user applications,
computer-supported cooperative work (CSCW)
applications... What is included? Not everyone agrees. Begin
by asking, "Was this software designed to support groups? Is
it being used to support groups?

Electronic mail and bulletin boards are well known, but few
other groupware prototypes and products have done as well
despite considerable effort. Successes exist, but progress is
slow and can lead in unanticipated directions.

GROUPWARE: PRIMARILY OFF-THE-
SHELF PRODUCTS

The three rings of Figure 1 place groupware in the software
universe somewhere between single-user applications and
information systems that support organizations. Each software
development area emerged independently and produced the
research and development literature identified on the left.

 

Figure 1. Development and research contexts.

 

Systems designed to support organizations achieved
prominence first, because the expense of early computers
required that they address major organizational goals. These
include large mainframe (and, later, minicomputer)
applications. "Organizational goals" are major goals typically
defined by upper management. Such goals are not always fully
agreed upon, even among management-if they were, the course
of internal systems development and acceptance would proceed
more smoothly than it does. These research and development
activities have variously been labelled data processing (DP),
information systems (IS), management information systems
(MIS), and information technology (IT).

By the early 1980s, the spread of interactive and personal
computing created large markets for applications designed for
individual users, such as spreadsheets and word processors.
Research and development activities drew on existing human
factors (HF) approaches to design and evaluation prior to the
emergence in the early 1980s of conferences and journals under
such banners as Computer and Human Interaction (CHI).

In the mid-1980s, the terms groupware and CSCW were coined
and conference series and literature appeared. Conditions that
emerged in workplaces to encourage this included: (a)
computation inexpensive enough to be available to all members
of some groups; (b) a technological infrastructure supporting
communication and coordination, notably networks and
associated software; (c) a widening familiarity with computers,
yielding groups willing to try the software; (d) maturing single-
user application domains that pushed developers to seek new
ways to enhance and differentiate products.

On the right in Figure 1 are the principal software development
contexts involved in each area. Most systems addressing
organizational goals are developed in-house or contracted out.
Most single-user applications are commercial products, with
development costs amortized over many customers. Groupware
is largely a new market for product developers, along with
telecommunications companies that have a focused interest in
multi-user applications such as live video. Attendance at the
first three CSCW conferences was primarily from software
product development companies (approximately 40%) and
universities (30%) with a steady telecommunications presence
(5%-10%).

To understand the problems encountered by groupware
applications, it is essential to realize that most interest in
groupware development is found among the developers and
users of commercial off-the-shelf products who previously
focused exclusively on single-user applications.

The huge software markets created by stand-alone personal
computers were once restricted to single-user applications, but
as networks link the computers, groups represent large potential



markets. As developers shift from supporting individual users to
supporting groups, many encounter for the first time the
challenges described in this article.

INFORMATION SYSTEMS IN
ORGANIZATIONS: A CONTRAST TO
PRODUCT DEVELOPMENT

The purchasers of a highly visible, expensive mainframe system
or application anticipate a substantial benefit. They know
organizational change is likely. Upper management is thus
likely to commit to helping the system succeed, through (a) job
redesign and creation; e.g., word processing skills become
required of new secretaries and a database administrator
position is created; (b) support for training users in order to
increase system acceptance; (c) restructuring to work around
important individuals who will not use the system (e.g., a
terminal-shy manager); and (d) positive leadership through
inspiration or example. Even with such support, success is not
assured. The system might not be salvageable or management
might be divided; for example, the management of the
information systems group and other corporate managers may
have conflicting goals.

These social and political factors that affect the introduction of
large mainframe and minicomputer systems are little known to
developers of single-user applications, including those moving
on to groupware development. Yet similar forces affect
groupware and must be considered by groupware developers.
To the extent that groups share characteristics of organizations,
groupware developers can learn something from the
experiences of IS developers. But not everything. Groups are
not organizations and groupware is different from large
systems.

Groupware targets smaller groups than do systems serving
organizational goals. Management is less committed to less
expensive groupware applications or features. An organization
will not restructure itself for each new application the way it
does around a major new system. In general, an organization
may adapt to a large computer system, but a small application
program must adapt to the organization, fitting into existing
work patterns and appealing to everyone who must support it.
On the other hand, groupware often benefits from user
familiarity with the computer system already in place and from
the relative homogeneity and shared goals of many groups.

Groupware is marketed as a product, whereas most MIS
development is internal or contracted. Products are designed
and evaluated to obtain a broad, competitive appeal, whereas
internal IS staff have a specific set of users and must orchestrate
their acceptance of a system. Each development context has its
own objectives, constraints, approaches. There is little
communication between product development, located in
computer and software companies, and information systems
development, located in large companies engaged in other
businesses or in companies that develop software on contract.
Different research communities have grown up around each
with different conferences, journals, and even languages [12,
14].

However, the MIS/IT community is interested in groupware,
primarily in support that works best with larger groups, such as
workflow management systems and electronic meeting rooms.
Declining technology costs bring large system software within
the economic reach of groups and thus into the product market.
For example, a "group decision support system" or electronic

meeting room, developed by the University of Arizona and
IBM, was as recently as 1988 intended only for internal use by
IBM, but in 1989 it was rechristened a "group support system"
and in 1990 was marketed as a product, TeamFocus. The word
"decision" was dropped not because of a sudden discovery that
meetings serve many purposes, but rather because with
declining system costs, the meeting rooms need not be used by
decision-makers to justify their expense.

The scope of these systems is shared by software engineering
support for concurrent engineering, process programming, and
other project-level activities. Thus, the middle ring could be
subdivided into small-group and large-group support. CSCW
research is defined to be inclusive, encompassing these and
even activity at the organizational level.

This article describes seven challenges in designing and
evaluating groupware products. Because of the social and
political factors at work in group settings, achieving groupware
acceptance is much trickier than single-user product
acceptance. It is difficult for "off-the-shelf" product developers
to jump over the counter and help out with product acceptance,
but they may have to: the eighth challenge for groupware
developers.

NEW PROBLEMS FOR PRODUCT
DEVELOPERS

In addition to technical challenges, groupware poses this
fundamental problem for product developers: Because
individuals interact with a groupware application, it has all the
interface design challenges of single-user applications,
supplemented by a host of new challenges arising from its
direct involvement in group processes.

Consider two relatively well-worked application areas: A
review of group decision support systems concluded that after
decades of effort, "their use is far below what could be expected
given their need and promise," and "although some for-profit
companies have built (group decision support systems), they are
not yet making much money," [17]. A 1987 report stated that
after 25 years of research, no company specializing in voice
technology had become profitable and that projected sales of
voice products were being revised sharply downward. More
generally, for a panel of leading researchers titled "How can we
make groupware practical?" Kraut wrote "the only successful
CSCW application has been electronic mail" and Sproull wrote
"groupware will never be practical and widely used in
organizations if it follows its current trajectory." [9]

These gloomy assessments deserve an explanation, given the
obvious potential in supporting something as widespread as
group activity. Figure 2 lists eight major problems that stem
from the social dynamics of groups, drawn from developer
experiences, descriptions of short-lived products and research
prototypes, and experimental and modelling studies in the
literature.

Overall, they call for better understanding of work
environments and for corresponding adjustments by developers.
Progress on the first five requires better knowledge of the
intended users' workplace. The final three require changes in
the development process. The final challenge in particular,
addressing the sensitivity of groupware to aspects of its
introduction in workplaces, demands that product developers
expand their conception of the development process and
product to include concerns that have been outside their sphere
of activity.



As these challenges are examined in detail and illustrated with
examples from various groupware areas, bear in mind that
applications and use situations differ. Success and failure
cannot be reliably predicted. Despite past problems and gloomy
assessments, we find evidence of progress and ideas for
working more effectively.

 

Figure 2. Eight challenges for groupware developers.

 

1. THE DISPARITY BETWEEN WHO DOES
THE WORK AND WHO GETS THE BENEFIT

A groupware application never provides precisely the same
benefit to every group member. Costs and benefits depend on
preferences, prior experience, roles, and assignments. A
groupware application is expected to provide a collective
benefit, but some people must adjust more than others. Ideally,
everyone benefits individually, even if some benefit more;
however, this ideal is rarely realized. Most groupware requires
some people to do additional work to enter or process
information that the application requires or produces.

Consider the automatic meeting scheduling feature that
accompanies many electronic calendar systems. The underlying
concept is simple: the person scheduling a meeting identifies
the participants and the system checks each person's calendar,
finding a time that is convenient for everyone. The direct
beneficiary is the meeting convenor, typically a manager or
secretary, but for the feature to work efficiently, everyone in the
group must maintain a personal calendar. Otherwise, the
scheduling program will create conflicts by scheduling
meetings in time that only seems to be open. However, studies
have found that electronic calendars are typically used as
communication devices by managers and are often not
maintained by individual contributors [8]. Thus, successful use
of automatic meeting scheduling requires additional work for
those group members who would not otherwise maintain
electronic calendars. As a result, this groupware feature is not
used.

Similarly, consider voice annotation to documents, which has
been implemented many times. For speakers, digitized voice
has advantages over handwritten or typed input. Speaking is
faster than writing or typing, conveys emotion and nuance
easily, and may be transmitted by telephone. Unfortunately,
digitized voice creates problems for listeners. It is slower to
take in, not easily scanned or reviewed, and more difficult to
manipulate-for example, proposed edits will have to be typed
in. When is it acceptable for speakers to burden listeners this
way? Possibly when users speak and listen in equal measure, as
in telephone conversations, or when the use of hands or a
keyboard is impossible. A disparity may also be accepted when
the speaker is of higher status than the listener, as with
dictaphone machines, where saving one person time or effort
can justify an arduous transcription. But in general, the
disparity in effort and benefit works against acceptance in many
situations and helps explain the failure of voice products to
meet expectations.

As a third example, consider a distributed project management
application that covers the scheduling and chronicling of
activities, the creation and evaluation of plans and schedules,
the management of product versions and changes, and the
monitoring of resources and responsibilities (e.g., [27]). Its
primary beneficiary is a project manager, but for it to succeed,
other group members must enter information that is not
typically kept on-line. This can lead to resistance. For example,
a "computer-assisted management system" for a naval vessel,
"its primary purpose to help the Commanding Officer and his
department heads administer the ship," was developed over ten
years [22]; due in part to the difficulty of getting everyone to
use it, it was eventually replaced by a system that lacked
management features.

Comparison: single-user applications. The problem does
not arise. If a group must pick one vendor for a single-user
application due to the economy of purchasing a site license
or to easily share its output, costs and benefits to group
members may vary. But this is not an issue that developers
can address.

Comparison: organizational information systems. An
expensive system is perceived to promise a substantial
collective benefit, so management is more committed to
take steps to insure its success, such as hiring
administrators and rewriting job descriptions. Thus, doing
the additional work becomes someone's explicit job. This is
much less likely for groupware. For example, it is unlikely
that engineers will be required to maintain on-line
calendars in order to support meeting scheduling.

Addressing the problem. Demonstrating an application's
collective and indirect benefits can help. Reducing the
work required of non-beneficiaries seems to be an obvious
priority, but it is very difficult to do in practice, because
pleasing the principle beneficiary is critically important and
the natural focus of attention. One promising approach is to
design, along with the technology, processes for using it
that create benefits for all group members. This has been
stressed in several new meeting management applications.
For example, a key element of the process in one is a
specific commitment delivered by the meeting convenor to
act on the contributions of the participants.



2. CRITICAL MASS AND PRISONER'S
DILEMMA PROBLEMS

Most groupware is only useful if a high percentage of group
members use it. Different individuals may choose to use
different word processors but two co-authors must agree to use
the same co-authoring tool! Achieving a "critical mass" of users
is essential for communication systems [8]. Even one or two
defections may cause problems for meeting scheduling,
decision support, or project management applications. Even in
an idealized situation in which every individual will benefit
once critical mass is achieved, the early adopters may well
abandon it before the critical mass of users is reached [35].

Markus and Connolly [35] use an elegant model to demonstrate
the possibility of "prisoner's dilemma" situations, in which if
everyone acts to further their personal best interest, the result is
worse not only for the group but also for each individual. With
some discretionary databases, as long as anyone updates them,
one's optimal strategy is to "freeload," but of course if everyone
tries to freeload, the system is not used at all.

These analyses compound the problem raised in the first
challenge by showing that even a net benefit with equal costs
and benefits for all users will not guarantee groupware success.

Comparison: single-user applications. The problem does
not arise.

Comparison: organizational information systems. One
organization-wide voice messaging system initially failed
to obtain a critical mass of users: Those who tried to leave
messages were discouraged when recipients did not use the
system. This system succeeded, and even came to be
appreciated by initial detractors, only after top management
forced a critical mass of use by removing the alternative
(message-taking receptionists). This is the kind of solution
available only to expensive corporate systems. A less
expensive groupware application or feature, such as voice
annotation in word processing, is unlikely to get a forceful
management shove past the critical point. Similarly, an
organization can hire data entry personnel to support a large
database, a solution to the prisoner's dilemma problem that
most groups cannot afford.

Addressing the problem. Designers can reduce the work
required of all users, build in incentives for use, and
suggest a process of use that provides or emphasizes
individual and collective benefits.

3. SOCIAL, POLITICAL AND
MOTIVATIONAL FACTORS

Groupware may be resisted if it interferes with the subtle and
complex social dynamics that are common to groups. The
computer is happiest in a world of explicit, concrete
information. Central to group activity, however, are social,
motivational, political and economic factors that are rarely
explicit or stable. Often unconsciously, our actions are guided
by social conventions and by our awareness of the personalities
and priorities of people around us, knowledge not available to
the computer. Wynn [in 11] shows that the social element can
be central even to clerical work that seems routine.

Tacitly understood personal priorities are tactfully left
unspoken, yet unless such information is made explicit,

groupware will be insensitive to it. For example, secretaries
know that managers' unscheduled time is rarely really free;
unauthorized scheduling of a manager's apparently open time
can lead to rejection of automatic meeting scheduling [8].
Similarly, a priority-based meeting scheduler foundered
because participants were reluctant to acknowledge publicly
that some of their meetings were low priority.

With one work management system, any employee who
reported a "priority problem" received system-generated
requests to forward progress reports to the Chief Executive
Officer-an extreme example of a design that ignores the
sensitivity of certain communications. Employees stopped
reporting problems. The vigilant system noted this and alerted
the administrator. The employees dealt with the resulting
complaint by writing a program that periodically opened files
and changed dates, which satisfied the watchful, automatic
monitor. Thus sabotaged, the system was of little use and was
eventually removed.

As noted earlier, meeting management systems have not met
expectations despite the appeal of improving the efficiency of
meetings. Decision-making is often complex and subtle, with
participants holding partially hidden agendas, relying on
knowledge of the others involved, and showing sensitivity to
social customs and motivational concerns. Because such factors
are not represented explicitly, the computer participates at a
disadvantage. Kraemer and King [17] wrote "Most efforts have
focused on the relatively narrow, rational view of the decision
process... But as experience shows, this is limited in its utility
because it specifically excludes the baffling nonrational or
quasi-rational behaviors individuals often exhibit." In one case,
a management group considered using an issue-based
information system in which issues, arguments, counter-
arguments, and decisions are entered, creating a record of
decision-making that can be used to communicate, review, and
explore alternatives. The plan to use the system was abandoned
because the manager wanted the group to project a strong sense
of consensus; the explicit record of opposing positions that the
application would immortalize was politically unacceptable.

Conflicts of interest can become major obstacles to success
when group members have very different occupations or roles.
Ehn [7] described such issues arising in the development of a
newspaper page layout application to be used by typographers,
journalists, and administrative staff.

Comparison: single-user applications. Applications that
affect an individual's performance have broader effects; for
example, desktop publishing software that enables anyone
to produce professional-quality documents can disrupt the
power balance in an organization. However, these social
effects are too indirect and context-specific to be addressed
by single-user application developers, whose effort is more
usefully directed to perceptual or cognitive interface factors
that most users experience similarly.

Comparison: organizational information systems. This
problem has been extensively explored in organizational
settings [e.g., 6, 26]. Mainframe software developers have
some advantages and some disadvantages in contrast to
small-systems developers. They have well-defined target
environments: Product developers must anticipate a range
of sensitivities across customer sites. On the other hand,
large systems inevitably affect workers whose goals
conflict, whereas groupware focuses on low-conflict
collaborations. A cohesive group is more likely to agree to
purchase and use a piece of software. Groupware
developers may risk overlooking conflict that occurs even



in small groups, but organizational systems researchers
may overestimate group conflict based on the higher levels
of conflict found across larger organizational units.

Addressing the problem. Recognizing the magnitude of the
problem and avoiding the common assumption of a
"rational" work environment are first steps. Developers
need sophisticated understandings of prospective users'
workplaces. Working with representative users whenever
possible is standard advice for developing interactive
systems. It is particularly good advice for groupware
developers.

4. EXCEPTION HANDLING IN
WORKGROUPS

Work processes can usually be described in two ways: the way
things are supposed to work and the way they do work.
Software designed to support standard procedures can be too
brittle. A passive strike tactic is to bring production to a halt by
"working to rule" or "doing things by the book"; this has
implications for groupware [1]. A wide range of error handling,
exception handling, and improvisation are characteristic of
human activity [30]. People know when the "spirit of the law"
takes precedence over the "letter of the law." Unfortunately, it is
tempting to base design on available work specifications.

Ishii and Ohkubo [15] described the range of problems and
consequences for designing groupware to support office
procedures. "The main sources of information were an office
work handbook made by the general affairs department and
interviews with clerical workers. While collecting information,
we found that the office workers made many short-cuts and
modifications to the standard procedures defined in the
handbook. Therefore, it was no easy task to determine the
actual standard procedure, even when it was defined clearly in
the handbook." The developers used this insight in designing
the system, but it was not enough: "Unfortunately, we
experienced problems in handling exceptional cases. This
groupware executes predefined office procedures. However, it
often happens that the standard procedure cannot be completed
because of unpredicted situations." The authors concluded that
AI techniques beyond the state of the art would be required to
make the system useful.

A case study [26] illustrates the problem at the organizational
level. Computerized stock control and sales order processing
systems were introduced at a chocolate factory that is part of a
large food company. Severe problems arose when the Computer
Services division of the food company installed the systems in
the chocolate factory: "[People in] Computer Services refer to a
'production mentality' where [chocolate factory] staff respond
to problems as and when they arise and are loathe to indulge in
long-term planning and adopt specific procedures. Most
important, they expect others to adjust to them, and resist the
discipline the computer imposes... Moreover, not only did
management fail to impose set procedures, but further ad hoc
arrangements were positively encouraged by the sales
department, as in the case of one customer who was assured
that they could amend their Friday order up to 1:00 pm on a
Monday... No doubt it believed it was working in the best
interests of the company, but its actions created considerable
problems for those trying to operate the computer." In some
areas the manual system continued to be used out of necessity.
At one point, the general manager decided someone was
sabotaging the system.

By recognizing the large amount of ad hoc problem solving in
human activity and realizing that descriptions of "standard
process" are often post hoc rationalizations, we can see the
behavior that upset the computer services division as
characteristic of efficient performance. After all, catering to the
needs of specific customers is often considered a virtue, not a
vice. In the case study, the general manager recommended that
the system be withdrawn, but "he was overruled by group head
office who were not prepared to lose face over the installation."
By hiring new personnel and taking other expensive measures,
the computer system was made to work. Upper management
wanted this large, expensive system to succeed. A typical
groupware application or feature, such as meeting scheduling,
voice annotation or even meeting support, will rarely have the
same degree of cost, visibility, and backing, and thus would fail
under similar circumstances.

The strong interest of many organizations in supporting
workflow management insures that this complex issue will
remain active. The outcome is difficult to predict: Some fear
that the computer will become an enforcer of rigid procedures;
others hope that greater explicitness will enable users to learn
about their organization, leading to what Kari Kuutti has called
"expansively mastered work."

Comparison: single-user applications. The preferences
and work habits of an individual are more constant over
time than those of groups, so flexibility is a greater
consideration in supporting groups. Group activity is
difficult to study and characterize; even establishing the
range within which group activity will vary is difficult.
Single-user applications support flexible problem-solving
by providing a range of atomic actions and imposing few
constraints on their sequencing, allowing users to construct
and evolve work patterns through rapid trial and error. This
approach works much less well for group activity, because
trial-and-error testing of options is slower and more public,
and adjusting or evolving a group's practices requires
negotiation.

Comparison: organizational information systems. Groups
are often more transitory and less well-defined than
organizations, so flexibility requirements may be greater.
(Some scholars have suggested that when organizations are
examined closely, groups seem to cease to exist.) The
influential Cohen, March and Olsen [4] model describes an
organization as "collections of choices looking for
problems, issues and feelings looking for decision
situations in which they might be aired, solutions looking
for issues to which they might be the answer, and decision
makers looking for work." A university, for example,
exhibits continuity of purpose and activity at the
organizational level that can persevere through dramatic
shifts at the group level. An empirical study of 16 hospitals
found "the predictability of the tasks confronting individual
nurses was more closely associated with the characteristics
of the nursing personnel on that unit than with the
characteristics of the control system of the ward,"
(Comstock, quoted in [24]). That is, ward-level policies did
not predict behavior as well as group characteristics.

This volatility should warn groupware developers not to
build software that imposes organizational controls on
groups. Pfeffer [24] describes a study by Meyer and Rowan
titled "Institutionalized organizations: formal structure as
myth and ceremony": "to maintain ceremonial conformity,
organizations import [views about what they should like
and how they should work] and incorporate them in their



structure, rules, and reporting requirements. However, since
such rules and structures may have little to do with how the
work can or should get performed, in fact there is little
impact on task performance... This decoupling, Meyer and
Rowan argued, is actually useful to the organization. It
permits the work to get done according to the localized
judgments of those doing the work while presenting to the
outside world the appearance of legitimated, rational
organization of work." Myths and ceremonies can endure
even as the real work processes change. In such
environments, it would not be useful to impose at the group
level the procedures dictated in the "myth and ceremony."
(Of course, organization-level computer support can help
perpetuate myths and enact ceremonies.)

Addressing the problem. To avoid the pitfall of supporting
rational "myths," learn how work is actually done.
Tailorable systems are a good step to providing flexibility,
but now to tailor effectively is a challenge, because people
are not conscious of detailed organizational functioning and
how changes will affect other people. Groupware cannot
count on the kind of management push that saved the large
chocolate factory system. Carasik and Grantham [3]
described the use of The Coordinator, a structured mail
system. Users complained "this doesn't fit the way we
work," but "management urging was the motivation for
continued use." However, one frustrated user threw the
software and documentation out of his office and after six
weeks, use was discontinued.

5. DESIGNING FOR INFREQUENTLY USED
FEATURES

If "to a hammer, everything looks like a nail," then to a
groupware designer, every work situation calls out for
communication or coordination support. We exaggerate the
importance and frequency of the objects and events that we
focus on. But many organizations are structured and
responsibilities are divided in order to minimize the overall
communication requirements and social interdependencies. As
is well known, an increase in size can lead to a decrease in
efficiency by increasing the communication and coordination
overhead. Work has important social elements that can use
support, but groupware features will be used less frequently
than many features supporting individual activity. This has two
important implications.

First, groupware features will fare better if integrated with
features that support individual activity. Consider co-
authorship applications. Anyone who has written
collaboratively can visualize the potential benefit of features
to support annotation, version tracking, and effortless
distribution of drafts. But most writing is done alone,
whether single-authored or on a section of a jointly written
document. Who would abandon their favorite word
processor to use a co-authorship application? Features to
support co-authorship must be integrated with those
supporting authorship. In addition, stand-alone groupware
applications may not justify high purchase costs or may be
perceived to fail if used appropriately but relatively
infrequently. How often do most of us manage meetings that
a group decision support system could facilitate, or embark
on co-authorship projects?

This leads to the second point: Design to be unobtrusive yet
accessible. Infrequently used groupware features must not

obstruct more frequently used features, yet they must be
known and accessible to users. This is a difficult balancing
act.

Comparison: single-user applications. Unlike groupware,
the most important features are frequently used, so the
problem of dealing with infrequent features is less pressing.
However, avoiding clutter while insuring awareness and
access is a general and very serious challenge faced by the
designers of all infrequently used features.

Comparison: organizational information systems. To
justify their cost, many organizational systems focus on
high frequency transaction processing, reducing this
problem. Also, at the organizational level, more than at the
group level, there are opportunities to support people who
actually do spend a lot of time communicating and
coordinating activity.

Addressing the problem. If possible, add groupware
features to an already successful application rather than
launch a new application with a fanfare that creates
expectations of heavy use. Ultimately, creating awareness
of and access to infrequently used features could require
systems that take the initiative to educate users over time.
Work in this area, mostly in AI, has proceeded slowly. Yet
the need grows, as computer capability exceeds by ever
greater amounts our actual use of them.

6. THE UNDERESTIMATED DIFFICULTY OF
EVALUATING GROUPWARE

Task analysis, design, and evaluation are much more difficult
for multi-user applications than for single-user applications. An
individual's success with a particular word processor is not
affected by the backgrounds or personalities of other group
members. Groupware is affected by them, and often must
interface simultaneously to users with different and sometimes
shifting roles, preferences, and backgrounds. Users can be
tested in a laboratory on the perceptual, motor, and cognitive
aspects of human-computer interaction that are central to
single-user applications, but lab situations and partial
prototypes cannot reliably capture complex but important
social, motivational, economic, and political dynamics. Even
when a full implementation is available, scheduling a test is a
logistical challenge.

Evaluation takes longer. Much of a person's use of a graphics
program can be observed in a single hour, for example, but
group interactions unfold over days or weeks. Groupware that
supports limited-duration activities such as a meeting has only a
modest advantage, because awareness of the preparation and
consequences are critical to understanding such events. In
addition, groupware evaluation methods are less precise. Field
observations are complicated by the number of people involved
over time at each site, the variability in group composition, and
the range of environmental factors that affect the use of the
technology. The pertinent skills of social psychology and
anthropology are absent in most development environments,
where human factors engineers and cognitive psychologists are
only slowly being accepted.

Finally, generalizing from experience is risky. Establishing
success or failure is easier than identifying the factors that
brought it about. A highly-motivated group can find a way to
use a seriously flawed product and a badly-managed installation



can cripple a good product, so one generally finds some
successes and some failures.

Consider this example: More than ten members of a research
laboratory took part in usability tests of a co-authoring
application. The data were analyzed to find interface problems.
This lab produces many co-authored articles and the application
required only a few minutes to bring up, yet several months
later it was not being used outside the experimental setting.
Why? Some people were not using the right type of computer
and others did not want to give up features of their favorite
word processor. They were fine-tuning the interface to an
application that would not be used.

The absence of definitive studies insures that other researchers
and developers will repeat costly mistakes. Hope springs
eternal. More often than not, CSCW and groupware
conferences include papers on automatic meeting schedulers
that were developed in ignorance of the fate of a decade of
commercially available products. Predictable problems were
encountered: insufficiently frequent user access an
unwillingness to place true priorities on a public system,
incomplete adoption of the system by group members, and so
forth. Respondents to a recent Internet poll identified meeting
scheduling as the most widely available and the least useful
groupware application. Similarly, voice editors for non-
specialists have been marketed for a decade with little success,
but they continue to appear. A typical (fictional) scenario of use
devised to sell the application: A sends B a voice message
containing directions for driving to a party, which B edits and
forwards electronically to C. Because C must transcribe the
directions, probably requiring a few passes through the voice
message, substantial work is required of the editor-intermediary
B, of C, and of any other recipients. In a real situation, anyone
in the chain could greatly reduce the overall effort by typing in
the directions.

Comparison: single-user applications. As noted, most are
easier to evaluate than groupware.

Comparison: organizational information systems. The
success or failure of a system built for one organization is
generally more obvious, although proving that its benefits
outweigh its costs (or vice versa) can be difficult or
impossible.

Addressing the problem. Development managers must
enlist the appropriate skills, provide the resources, and
disseminate the results.

7. THE BREAKDOWN OF INTUITIVE
DECISION-MAKING

Decisions to develop unworkable applications are frequent. The
problem often lies not in the detailed design but in the
conception, in the nature of decision-making in development
environments.

Decision-makers rely heavily on informed intuition. Most
product development experience is based on single-user
applications, for which intuition can be a more reliable guide. A
manager with good intuition who quickly gets a feel for the use
of a word processor or spreadsheet can fail to appreciate the
intricate demands on a groupware application that requires
participation by a range of users.

In particular, decision-makers are drawn to applications that
selectively benefit one subset of the user population: managers.
Project management applications primarily benefit project
managers; meeting schedulers and meeting management
systems benefit those who convene meetings; decision support
systems primarily benefit decision-makers; digitized voice
products appeal to those who rely on speech (remember the
dictaphone). Similarly, managers envision their own use of
features such as a natural language interface and support
development efforts without recognizing the drawbacks and
costs.

This bias is understandable-each of us has ideas about what will
help us do our job. But in the case of groupware, managers
often underestimate the down side, the unwelcome extra work
that an application will require of other users, resulting in
neglect or resistance. For example, a group decision support or
work management application can require many people to learn
to enter data, it can record information that participants prefer
not to have disseminated, and it can block other means to
influence decision-making, such as private lobbying. Intuition
fails when the intricate dynamics of such situations are not
appreciated. Managers can also fail to appreciate the difficulty
of developing and evaluating groupware and not recognize that
users will not be required to do the work to insure success.
Finally, their interactions with customers are with customer
management, who share their biases. My observation, as a
product developer, was that development managers whose
intuitions were generally superb could fail spectacularly with
groupware. Perhaps, with more confidence in their intuition,
they pushed such projects more strongly than more cautious
managers would.

Good intuition for multi-user applications is unlikely to be
found anywhere in a product development environment.
Experience as designers, implementers, users, evaluators, or
managers is heavily based on single-user applications. This has
shaped the skills and outlooks that are present. For example,
human factors engineers are trained to apply techniques based
on perceptual, motor and cognitive psychology to study
phenomena of brief duration. They are unfamiliar with the
techniques needed to study group dynamics over time.

Once a project is underway, most researchers or developers rely
on feedback from a few potential users, often those expected to
benefit the most. For example, the greatest interface challenge
for an intelligent project management application is to
minimize the information entry effort required of each
subordinate (or provide compensatory benefits), but attention is
instead directed toward information visualization: the interface
for the project manager. "Managers must know what
information is needed, where to locate it, and how to interpret
and use it. Equally important is that they be able to do so
without great effort" [27]. This appeals to the manager
sponsoring the project, but it is not wise to focus exclusively on
designing for the principal beneficiary, who should already be
relatively highly motivated to use the product.

The converse intuition failure also occurs: A decision-maker
does not recognize the value of an application that primarily
benefits non-managers, even when it would provide a collective
benefit to the group or organization. This is particularly true for
applications that create additional work for managers. This
point is addressed below in the context of electronic mail.

Comparison: single-user applications. Early interactive
applications (e.g., line editors) were developed by and for
programmers, so intuition was particularly reliable.



Intuition is generally better for single-user applications than
for groupware, although it is relied upon too heavily.

Comparison: organizational information systems. The
problem can be less severe and stronger remedies are
available. An internally developed system is to support the
familiar business at hand, not external customers. Personnel
can be hired or retrained; customers usually cannot.

Addressing the problem. Recognition of this problem was
a factor in the emphasis on user involvement in the
sociotechnical and Scandinavian collective resource
approaches to IS development, discussed below. Product
developers face obstacles in involving users that could be
particularly detrimental to groupware development [13]. If
development management recognizes the risks,
complexities, and fallibility of intuition, we could see fewer
groupware projects, but those few might have realistic
design goals and the resources to meet them.

8. MANAGING ACCEPTANCE: A NEW
CHALLENGE FOR PRODUCT
DEVELOPERS

Much research in organizational information systems has
addressed system acceptance (e.g., [18, 19]). Product
developers are usually shielded from such concerns by
marketing, customer support, documentation developers,
training developers, and others who stand between them and the
user. Customers also accept some responsibility for their choice
and may have consultants, internal developers, and other groups
to tailor, supplement, or oversee the introduction of a product.

Unfortunately, groupware can be so sensitive to aspects of its
introduction that these strategies fail: If sold off the shelf in the
usual fashion, it can be doomed. A word processor that is
immediately liked by one in five prospective customers and
disliked by the rest could be a big success. A groupware
application to support teams of five nurses that initially appeals
to only one nurse in five is a big disaster. Groupware must be
introduced very carefully, leaving little to chance.

Not surprisingly, the first research articles to consider adoption
from a product developer's perspective focused on groupware.
Product developers have been isolated from user environments
and have little awareness that factors other than utility and
usability govern a product's acceptance or rejection. The
following strategy for encouraging successful adoption of
groupware products, drawn from the work of Ehrlich, Francik,
and their colleagues [5, 8], involves cooperation between
developers and marketers.

Identify a group's problems and match the computer solution to
it. For example, geographic proximity of group members guides
choices between voice or electronic mail, or synchronous or
asynchronous decision support. Identify appropriate work
processes: Our tendency to focus on structured processes can be
inappropriate for communication technologies that best support
important (but often unrecognized) unstructured processes.
Select appropriate pilot groups and individuals: Systems can
fail if placed on executive desks when secretaries are more
appropriate, if restricted to secretaries when professionals
should be included, and so on. Work processes can cut across
an organization chart (complicating purchasing decisions).
Allocate equipment properly: The positioning of peripheral
equipment such as printers and scanners can be critical.

Give the adopting group a clear understanding of the mature
use of the application, perhaps through a site visit, to overcome
uncertainty; in particular, provide education that demonstrates a
positive impact on the work day. Step-by-step training on
unfamiliar features can reduce anxiety even when insufficient
for complete learning. Management attitude is critical to
acceptance, a common observation of special significance for
applications that represent a smaller organizational investment.
Finally, someone should be prepared to prevent premature
rejection by anticipating and dealing quickly with early
problems, and follow-through support should be in place to
handle the post-honeymoon period, when the group's curiosity
wanes and work returns to center stage.

These strategies, familiar to those concerned with
organizational systems, have been beyond the scope of product
developers. Consultation is not packaged with shrinkwrap
software. But if customers walk off with a groupware product
the way they do with a spreadsheet program, these steps will
not be taken and the product will probably fail. Through
involvement with the adoption process developers can
contribute to it and learn to build support for adoption into the
product itself. Recognition of this is evident in the successful
marketing of the Lotus Notes groupware application: A product
development company shifted to an IS approach based on direct
sales of software bundled with consulting support. The same
approach was used by IBM with TeamFocus. The innovative
but unsuccessful developers of Wang Freestyle reached the
same conclusion [5]. But most groupware has been marketed
with a traditional off-the-shelf approach-and failed.

Comparison: single-user applications. Developers have
not dealt with individual users. Adding consulting services
to a groupware package increases the cost and shifts the
transaction away from the packaged software model held
by vendors of single-user applications.

Comparison: organizational information systems.
Groupware developers can learn from IS experience. They
face a daunting challenge: They must pay more attention to
system acceptance problems than product developers have
in the past, yet they face more difficult acceptance
problems than large systems developers have in the past,
due to less strong management support.

Addressing the problem. By adding groupware features to
existing applications, this problem is sidestepped. Stand-
alone groupware must first be designed to meet the real
needs of group members. Developers who understand the
work environment well enough to design successfully will
be in a good position to help design strategies for
supporting adoption as well.

ELECTRONIC MAIL AND OTHER
SUCCESSES

Products such as electronic mail, databases, and code
management systems are used successfully in group contexts.
How do they avoid the pitfalls? Are they potential models?
First, consider electronic mail.

1) Who does the work and who benefits? Electronic mail
provides an equitable balance for sender and recipient. The
person with a message to communicate must type it, while the
receiver can read it easily and when convenient; thus, the
primary beneficiary typically does a little more work. 2)
Critical mass problems: These can have an effect, although with



only one other user or a path to an external bulletin board,
electronic mail can be useful. 3) Compatibility with social
practices: At times almost conversational, at times almost
epistolary, electronic mail allows us to apply existing social
conventions. However, differences lead to problems such as
"flaming," "junk email," "smileys," and to more subtle but
significant problems described below. 4) Exception-handling:
The asynchronous, informal nature of most electronic mail
makes it flexible; applications that impose more structure can
suffer accordingly [2, 3]. 5) Frequency of use: Email is often
relatively heavily used for groupware and basic use involves
few features to learn and recall. 6) Difficulty of evaluation:
Organizational costs and benefits are difficult to assess but the
heavy discretionary use by individuals is a sign of success. 7)
Poor intuitions for groupware: Not all email applications
succeed; there has been trial and error and intuitions have
improved. 8) Acceptance: An interesting anomaly is that use
has spread from academic and public sources more than
through product development and marketing processes, a point
returned to below.

Many of the applications successful in group settings share
several properties with electronic mail. As is often true of
email, the primary beneficiaries of databases and code
management systems are not managers or decision-makers, but
people who use computer systems more routinely. These object
management applications, like email, focus on organizing and
handling information without incorporating notions of role,
process, and social interaction. For this reason some do not
consider them groupware; also for this reason they largely
avoid being overly rigid and disrupting social processes,
challenges 3 and 4.

SHIFTING TO A WORK PERSPECTIVE

Electronic mail demonstrates how important it is to adopt a
workplace perspective rather than a technology perspective...
and how difficult it is.

As developers, we see the distinction between sender and
receiver as the key role distinction in the use of electronic mail.
But, as the anthropologist Perin [in 5] revealed, the key
distinction in electronic mail use in many organizations is that
of manager and subordinate. The technology does not recognize
the supervisor-subordinate distinction, but it is critical in the
workplace. Whatever distinctions are designed into the
technology, its reception is determined by distinctions that exist
in the organization.

One groupware anomaly of electronic mail is its success.
Another is that its use does not selectively benefit managers or
decision-makers. In fact, Perin documents that the contrary can
be true. The ability for anyone to disseminate information
rapidly can create problems for managers whose jobs involve
filtering and routing information. In a classic bureaucracy,
lateral communication is minimized-information flows up and
down through the hierarchy. Electronic mail, even more than a
telephone on each worker's desk, supports efficient lateral
communication. This may provide greater flexibility and
efficiency-but also create difficulties for managers in
organizations built on the hierarchical model.

Similarly, the informality of electronic mail makes it easier, less
imposing, and more private to bypass hierarchical levels.
People who would not think of scheduling a meeting with their
manager's manager will raise an issue by email, which can
provide a level of informality approaching that of a chance
conversation in the hall. Being bypassed can complicate

managers' jobs. Rice [25] notes a study in which 7% of the
messages spanned more than one level. This number may not
seem high, but many employees never have face-to-face skip-
level meetings. A few such messages, or even the possibility of
making them, could subtly shift the managerial function.

One managerial responsibility is to absorb information from
higher levels and tailor its presentation to subordinates to
maximize their understanding or obtain a desired response.
Correspondingly, information obtained from subordinates is
filtered and recast to higher management. But information
received electronically is more easily forwarded without
tailoring. In fact, editing such messages can be problematic: If
the original electronic version is forwarded by another path, the
tampering is revealed. This places managers in a no-win
situation. Olson and Lucas [23] suggest that it could lead to
more "rational" environments by eliminating "distortion"
introduced by bad managers, but good management involves
translating and adding context to messages, taking time to
prepare others to receive information, and other tasks that
electronic mail can make more difficult.

And, of course, the ability of anyone to send a rumor or piece of
news instantly to everyone in an organization creates a
volatility that management must cope with.

The asynchronous quality of email, often seen as a virtue, can
bother managers whose time is tightly budgeted: "Mostly, a lot
of times, I won't respond. I'll print the message and stick it in
their file and wait until their weekly meeting," said one
manager in an interview. In support of this view, Eveland and
Bikson [10] found that professionals used email steadily
through the day, but managers used it primarily in the early
morning or late afternoon.

Perin [in 5] analyzed field studies and suggested that "these
electronic social formations represent new sources of industrial
conflict... they are seen as subverting legitimated organizational
structures." While noting the collective value of electronic
communication to large organizations, she describes how it can
conflict with traditional organizational practices. For example,
"the very 'invisibility' of electronic social fields, which may be
cultivated bureaucratically because they are believed to enhance
productivity, also delegitimates them and becomes the source of
managerial negativism and suspicion." A study by Fanning and
Raphael, cited by Perin, concluded that electronic mail "is
simply not a management tool, if by management we mean
those above the level of project leader... a medium which allows
widely separated people to aggregate their needs is, in fact,
quite frightening. Some managers correctly foresee that such a
system can be most upsetting to the current established order,
and do not participate in it as a result."

Email can be introduced under conditions that lead to different
patterns of use, perhaps at times even strengthening hierarchic
control. But consider the implications should the general pattern
outlined above prove to hold true. Some managers can
discourage or terminate email use, but many organizations have
introduced it. Many students and professionals are accustomed
to it. Thus, the forces Perin described are likely to play
themselves out over time, forcing organizations designed on
outmoded notions of efficiency and control to evolve. Finding
new organizational forms and minimizing the cost of shifting to
them are the challenges ahead.

Can we as technology developers change our perspective or
must we rely on anthropologists and others? Visionary writers
have stressed the need for designers to understand the
functioning and evolution of groups and organizations, but
recognizing the problem is easier than truly escaping the



technology orientation reflected in the term "groupware" itself.
And intuition-governed, technology-driven, trial-and-error
approaches are proving particularly expensive and failure-prone
in this area.

Through the 1970s and 1980s, the British socio-technical and
Scandinavian participatory design approaches experimented
with meaningful engagement of users in systems development,
a slow process of mutual education. Recently these have
attracting wider attention through conference presentations and
published overviews [11, 28]. The June, 1993 issue of
Communications was devoted to efforts to apply these methods
in Europe and the United States.

WAYS TO PROCEED

Extend the use of single-user applications in group settings
by adding groupware features- collaborative writing features
to an existing word processor, group support features to
spreadsheets, and so forth. The economic barrier to
acquiring a new system to support relatively infrequent
activity is bypassed and rapid adoption is replaced by
incremental adoption.

Find niches where existing groupware succeeds, either in
spite of the problems described in this article or because they
do not arise. Voice applications helps a traveling sales force
that relies on the telephone, structured email applications
may succeed in autocratic organizations, and so on.

Build on object management or shared information systems
that have fared better than those that incorporate elements of
organizational structure and work process. Object Lens [20]
and Lotus Notes combine electronic mail and databases.
Electronic bulletin boards are used to guide research,
development and marketing [e.g., 29]. Modelling group
process has proven more difficult, but workflow software is
reportedly successful in supporting structured activity such
as processing insurance forms. The variability of much
group activity is a brake to much wider application.

Find ways to provide direct benefits for all group members.
In particular, supplement the technology with a design for
the process of its use. Design and evaluation are easier and
intuition better if relatively homogeneous groups are
targeted.

Be wary of applications that will selectively benefit
managers or decision-makers who are typically not heavy
computer users.

Educate managers and developers about groupware, the risks
involved, and the resources and approaches that are required.
Successful products such as Lotus Notes were longer in
development than most applications. Working with users,
extensive prototyping, and iterative design can be more cost-
effective, but they are expensive.

We need a better understanding of decision-making
processes in development. Too often researchers study other
researchers, developers build systems because the
technology exists, and managers support the development of
systems that appeal to other managers. We need a more
empirical approach to broaden our intuitions. Trial-and-error
learning has become too slow and costly.

When you examine research prototypes and available products,
bear in mind that projects have purposes other than producing
something useful. Other goals include exploring an interesting
technical problem or matching a competitor.

Consider adoption issues from the outset. A groupware
application may lead to organizational evolution, but its
introduction must be smooth. Groupware must be more "group-
friendly" than mainframe systems have been. To minimize the
disruption requires interfaces adapted to users' backgrounds,
roles, and preferences.

Anticipate organizational change. Some technology will replace
or deskill workers; groupware that handles communication and
coordination-management functions-can erode authority
structures. Decentralized control could in turn further dim the
prospect for groupware that selectively benefits management, a
description of most groupware that has been developed.

Groupware may follow the pattern of other "network
technologies" such as the telephone and the interstate highway.
They spanned existing organizational boundaries, were
designed for purposes unrelated to their ultimate use, and led
slowly to a wide range of indirect effects. Our tentative
exploration of a new technology is a step toward organizational
and societal change that is not easily predicted or hurried.

ACKNOWLEDGMENT

My interest in these issues arose from successes and more often
failures of applications that as a developer or user I embraced
enthusiastically. The analyses emerged from interactions over
many years with close colleagues and others. The significance
of different contexts of system development arose in
discussions with colleagues at Aarhus University. Discussions
with Clarence Ellis, Gerhard Fischer, Joan Greenbaum, Rob
Kling, Lynne Markus, Steve Poltrock, Susan Ehrlich Rudman,
and Suzanne Watzman were particularly helpful. Comments by
Bob Kraut and anonymous reviewers led to improvements.

REFERENCES
1. Bannon, L.J. and Schmidt, K., 1991. CSCW, four characters in search of a context. In
J.M. Bowers and S.D. Benford (Eds.), Studies in computer supported cooperative work, 3-
16. Amsterdam: North-Holland.
2. Bullen, C.V. and Bennett, J.L., 1990. Learning from user experience with groupware.
Proc. CSCW'90 (Los Angeles, Oct. 7-10).
3. Carasik, R.P. and Grantham, C.E., 1988. A case study of computer-supported cooperative
work in a dispersed organization. Proc. CHI '88 (Washington D.C., May 15-19), 61-66.
Some specific details were given only in the verbal presentation.
4. Cohen, M.D., March, J.G. and Olsen, J.P., 1972. A garbage can model of organizational
choice. Administrative Science Quarterly, 1-25.
5. Collaborative Computing. Special section of Communications of the ACM, 34, 12.
6. Curtis, B., Krasner, H., and Iscoe, N. (1988). A field study of the software design process
for large systems. Communications of the ACM, 31, 11, 1988, 1268-1287.
7. Ehn, P., 1989. Work-oriented design of computer artifacts. Hillsdale, NJ: Lawrence
Erlbaum Associates.
8. Ehrlich, S.F., 1987b. Strategies for encouraging successful adoption of office
communication systems. ACM Transactions on Office Information Systems, 5, 340-357.
9. Ensor, R., 1990 (Moderator). How can we make groupware practical? Proc. CHI'90
(Seattle, April 1-5).
10. Eveland, J.D. and Bikson, T.K., 1987. Evolving electronic communication networks: An
empirical assessment. Office: Technology and People, 3, 103-128.
11. Greenbaum, J. and Kyng, M., 1991. Design at work: Cooperative design of computer
systems. Hillsdale, NJ: Lawrence Erlbaum Associates.
12. Grudin, J., 1991a. Interactive systems: Bridging the gaps between developers and users.
IEEE Computer, 24, 4, 59-69.
13. Grudin, J., 1991b. Obstacles to user involvement in software product development, with
implications for CSCW. International Journal of Man-Machine Studies, 34, 3, 435-452.
14. Grudin, J., 1993. Interface: An evolving concept. Communications of the ACM, 36, 4,
110-119.
15. Ishii, H. and Ohkubo, M., 1990. Message-driven groupware design based on an office
procedure model, OM-1. Journal of Information Processing, Information Processing
Society of Japan, 14, 2, 184-191.
16. Kling, R., 1980. Social analyses of computing: Theoretical perspectives in recent
empirical research. ACM Computing Surveys, 12, 1, 61-110.
17. Kraemer, K. and King, J., 1988. Computer-based systems for cooperative work and
group decision making. ACM Computing Surveys, 20, 115-146.
18. Lucas, H.C., Jr., 1975. Why information systems fail. New York: Columbia University.



19. Lyytinen, K. and Lehtinen, E., 1987. Seven mortal sins of systems work. In P. Docherty,
K. Fuchs-Kittowski, P. Kolm, and L. Mathiassen (Eds.), System design for human
development and productivity: Participation and beyond. Amsterdam: North-Holland.
20. Malone, T.W. and Lai, K-Y. (1992). Toward intelligent tools for information sharing and
collaboration. In R. P. Bostrom, R. T. Watson & S. T. Kinney (Eds.), Computer Augmented
Teamwork: A Guided Tour. New York, NY: Van Nostrand Reinhold.
21. Markus, M.L. and Connolly, T., 1990. Why CSCW applications fail: Problems in the
adoption of interdependent work tools. Proc. CSCW'90 (Los Angeles, Oct. 7-10).
22. McCracken, D.L. and Akscyn, R.M., 1984. Experience with the ZOG human-computer
interface system. Int. J. Man-Machine Studies, 21, 293-310.
23. Olson, M.H. and Lucas, H.C., Jr., 1982. The impact of office automation on the
organization: Some implications for research and practice. Communications of the ACM, 25,
11, 838-847.
24. Pfeffer, J., 1985. Organizations and organization theory. In G. Lindzey and E. Aronson
(Eds.), Handbook of social psychology. NY: Random House.
25. Rice, R.E., 1990. Computer-mediated communication systems network data: Theoretical
concerns and empirical examples. Int. J. Man-Machine Studies, 32, 627-647.
26. Rowe, C.J., 1987. Introducing a sales order processing system: the importance of
human, organizational and ergonomic factors. Behaviour and Information Technology, 6,

455-465.
27. Sathi, A., Morton, T.E. and Roth, S.F., 1988. Callisto: An intelligent project management
system. In I. Greif (Ed.), Computer-supported cooperative work: a book of readings. San
Mateo: Morgan Kaufmann., 269-309.
28. Schuler, D. and Namioka, A. (Eds.), 1993. Participatory Design: principles and
practices. Hillsdale, NJ: Lawrence Erlbaum Associates.
29. Sproull, L., 1986. Using electronic mail for data collection in organizational research.
Academy of Management Journal, 29, 1, 159-169.
30. Suchman, L., 1983. Office procedures as practical action: Models of work and system
design. ACM Transactions on Office Information Systems, 1, 320-328.
______________________________________________________________________________
[1] The word "implementation" is generally used. Unfortunately, product developers use
"implementation" as a synonym for coding, one of many terminological differences that
hinder communication.
[2] Flaming refers to the very angry messages that email seems to elicit; junk email results
from the ease of adding people to distribution lists (removing individuals is often more
difficult that including them); a smiley signals humorous intent or emotional context using
an image of a face rotated 90 degrees, such as :-)


