

C O N T E X T U A L

D E S I G N

Defining Customer-Centered Systems

Contextual Design: Defining Customer-Centered Systems
is the premier title in the Morgan Kaufmann Series in
Interactive Technologies.

Stuart Card, Jonathan Grudin, Mark Linton, Jakob Nielsen,
Tim Skelly, Series Editors

C O N T E X T U A L

D E S I G N

Defining Customer-Centered Systems

MORGAN K A U F M A N N PUBLISHERS

An Imprint Of Elsevier
SAN FRANCISCO SAN DIEGO NEW YORK BOSTON

L O N D O N SYDNEY T O K Y O

H U G H B E Y E R

K A R E N H O L T Z B L A T T

I N C O N T E X T E N T E R P R I S E S

Senior Editor Diane Cerra Text Design Ross Carron Design
Production Manager Yonie Overton Copyeditor Ken DellaPenta
Production Editor Elisabeth Beller Proofreader Jennifer McClain
Cover Design Ross Carron Design Compositor UpperCase Publication Services
Cover Photo Will Crocker/ Illustrator Chérie Plumlee

THE IMAGE BANK Indexer Valerie Robbins
Printer Courier Corporation

Designations used by companies to distinguish their products are often claimed as trademarks or
registered trademarks. In all instances where Morgan Kaufmann Publishers is aware of a claim,
the product names appear in initial capital or all capital letters. Readers, however, should contact the
appropriate companies for more complete information regarding trademarks and registration.

Permissions may be sought direcdy from Elsevier's Science and Technology Rights Department in
Oxford, UK. Phone: (44) 1865 843830, Fax: (44) 1865 853333, e-mail: permissions@elsevier.co.uk.
You may also complete your request on-line via the Elsevier homepage: http://www.elsevier.com
by selecting "Customer Support" and then "Obtaining Permissions".

ACADEMIC PRESS
An Imprint Of Elsevier
525 B Street, Suite 1900, San Diego, CA 92101-4495, USA
http://www. academicpress. com

Academic Press
Harcourt Place, 32 Jamestown Road, London NWl 7BY, United Kingdom
http:I I www. h buk. co. uklapl

Morgan Kaufmann Publishers
340 Pine Street, Sixth Floor, San Francisco, CA 94104-3205, USA
http://www. mkp. com

© 1998 by Academic Press
All rights reserved
Printed in the United States of America

Transferred to Digital Printing, 2010

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means—electronic, mechanical, photocopying, recording, or otherwise—without the prior written
permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Beyer, Hugh

Contextual design : defining customer-centered systems / Hugh
Beyer, Karen Holtzblatt.

p. cm.
Includes bibliographical references and index.
ISBN-13: 978-1-55860-411-7 ISBN-10: 1-55860-411-1 (pbk.)

1. System design. 2. System analysis. I. Holtzblatt, Karen.
II. Tide.
QA76.9.S88B493 1998
004.2'l~dc21 97-35927

CIP
This book is printed on acid-free paper.

Acclaim for Contextual Design
If necessity is the mother of invention and you don't know what users
need, you can't invent. Karen and Hugh present a step-by-step way to
uncover, understand, and use those needs. If developers are not
already using techniques like those presented here, they should read
this book carefully to see what they are missing.

D A N B R I C K L I N

cocreator of VisiCalc

Hugh Beyer and Karen Holtzblatt are widely recognized as the fore-
most experts on contextual inquiry, and they have packed what they
know into a book of both substance and intelligence. It has been a
long wait but worth it. The book lucidly shows how to capture the
real requirements of customers and how to tailor designs to fit their
needs. If you care about your customers and want to create products
they need as well as want, then you need to understand contextual
inquiry and contextual design. You need this book.

L A R R Y C O N S T A N T I N E

Principal Consultant, Constantine & Lockwood, Ltd.
Professor of Computing Sciences, University of

Technology, Sydney (Australia)
Author of Constantine on Peopleware and Software for Use

For many years, Beyer and Holtzblatt have been pioneers in the field
of human-computer interaction, showing how the context of com-
puter use can be (and needs to be) the central focus of analysis and
design. This book conveys the understanding and wisdom that they
have gained from their experience in contextual design in a form that
is accessible to students and design practitioners. It will serve as a
guide and handbook for the next generation of interaction designers,
and as a result we can expect the usabilty and appropriateness of com-
puter systems to be greatly improved.

— T E R R Y W I N O G R A D

Stanford University

This page intentionally left blank

Foreword
Marshall McClintock

It's almost passé now for forewords to books on the human-computer
interaction (HCI) to begin with stating how computers were once

the domain of specialists and are now mass consumer products. Today
people are likely to use computers at work and school as well as while
shopping and playing, and numerous other ways. Now computers are
simply part of daily life in the developed world, and nothing suggests
that this trend will stop. However, it's not the ubiquity of computers
that's particularly surprising; rather it's the ways we've found to inte-
grate them (often rather successfully) into our lives.

Computer interaction has come a long way since punched cards.
Moreover, in the process, we have learned much about human-computer
interaction, much of which HCI research has substantiated. However,
designing computer software still remains a rather mysterious art.
Newspapers and magazines abound with stories of computer systems
and products that are delivered late and over budget and that do not
perform as expected. Anyone who has had to wait while a store clerk
struggles with a new, "easy-to-use" computer system can attest to this.

While numerous books exist on software and computer system
design, they primarily focus on the engineering aspect. Usually there
is a brief chapter (or a few pages, more likely) on defining require-
ments, and then you are into a detailed discussion of object modeling
and data flow diagrams. Missing is a discussion of and a set of meth-
ods for deciding what to build and how what you build will affect all
the other related activities. In filling that gap, this book is a landmark.

Design of any complex product, by its nature, is a multidiscipli-
nary group process. Any attempt to bring some structure to design, of

Foreword

necessity, must span numerous fields. The authors do an admirable
job of weaving techniques from industrial engineering, anthropology,
human factors, software design, and group process together. While
each of these various techniques has its own pedigree, this book's value
is the way the authors have integrated them into a coherent design
methodology.

In addition, the authors have considerable experience in applying
this methodology to real problems in real software development proj-
ects with real development teams across a wide array of businesses.
These have not been "toy projects" conducted with graduate students.
The examples in the book are numerous and practical. The diagrams
are clear and illustrate the important use of rough models to capture
design thinking.

All this praise notwithstanding, I would not be the jaded skeptic
I am if I did not offer a few caveats. The complete contextual design
methodology may not fit all organizations or all design projects equal-
ly well. Some parts may have more benefit in some situations than
other parts. You may have to adjust it some for your own work
process. However, without understanding the whole methodology,
you cannot make these trade-offs.

As I said earlier, one of the strengths of this book is that it has
been written by people who have a great deal of experience in software
product development. It is also an ambitious book. It is not the com-
plete solution, but it is, I believe, the beginning of the solution. Good
software design will not come from a few specialists. It must be
informed by the work of many people involved in designing products.
I believe this book provides a sound basis for everyone who is now, or
will be in the near future, involved in creating useful and usable soft-
ware products.

Contents

Foreword vii

Preface xvii

C H A P T E R 1 Introduction 1

The challenges for design 3
The challenge of fitting into everyday life 5
Creating an optimal match to the work 7
Keeping in touch with the customer 9

The challenge of design in organizations 10
Teamwork in the physical environment 13
Managing face-to-face design 14

The challenge of design from data 16
The complexity of work 17
Maintaining a coherent response 18

Contextual Design 21

Part 1 Understanding the Customer 27

C H A P T E R 2 Gathering Customer Data 29

Marketing doesn't provide design data 30
The rocky partnership between IT and its clients 33

Improving communication with the business 34
The role of intuition in design 35

Contextual Inquiry reveals hidden work structure 36

C H A P T E R 3 Principles of Contextual Inquiry 41

The master/apprentice model 42
The four principles of Contextual Inquiry 46

Context 47
Partnership 51
Interpretation 56
Focus 61

The contextual interview structure 64

C H A P T E R 4 Contextual Inquiry in Practice 67

Setting project focus 67
Designing the inquiry for commercial products 69
Designing the inquiry for IT projects 71

Designing the interviewing situation 73
Deciding who to interview 76
Making it work 78

Part 2 Seeing Work 79

C H A P T E R S A Language of Work 81

Using language to focus thought 82
Graphical languages give a whole picture 83
Work models provide a language for seeing work 84
Work models reveal the important distinctions 86

C H A P T E R 6 Work Models 89

The flow model 89
Recognizing communication flow 90
Creating a bird s-eye view of the organization 95

The sequence model 96
Collecting sequences during an interview 99

The artifact model 102
Collecting artifacts during an interview 103
Inquiring into an artifact 106

The cultural model 107
Recognizing the influence of culture 111
Making culture tangible 772

Contents

The physical model 115
Seeing the impact of the physical environment 117
Showing what matters in the physical environment 119

The five faces of work 120

C H A P T E R 7 The Interpretation Session 125

Building a shared understanding 126
The structure of an interpretation session 128

Team makeup 128
Roles 129
Running the session 134
The sharing session 135

Part 3 Seeing across Customers 137

C H A P T E R 8 Consolidation 139

Creating one representation of a market 140
A single representation is a marketing and planning tool

Facilitate the partnership between IT and customers 144
IT can be the voice for coherent business processes 144
Representations of work stabilize requirements 146

Seeing the whole 148

C H A P T E R 9 Creating One View of the Customer 151

The affinity diagram 154
Consolidating flow models 163
Consolidating sequence models 171
Consolidating artifact models 178
Consolidating physical models 184
Consolidating cultural models 190
The thought process of consolidation 197

C H A P T E R lO Communicating to the Organization 199

Communication techniques 200
Walking the affinity 201
Walking the consolidated models 202
Touring the design room 203

Contents

Tailoring the language to the audience 204
Marketing 205
Customers 206
Engineering 207
Management 209
Usability 210

Models manage the conversation 211

Part 4 Innovation from Data 213

C H A P T E R 11 Work Redesign 215

Customer data drives innovation 216
Creative design incorporates diversity 218
Contextual Design introduces a process for invention 220
Work redesign as a distinct design step 221

C H A P T E R 1 2 Using Data to Drive Design 229

The consolidated flow model 230
Role switching 230
Role strain 232
Role sharing 234
Role isolation 235
Process fixes 238
Target the customer 239
Pitfalls 239

The consolidated cultural model 240
Interpersonal give-and-take 240
Pervasive values 241
Public relations 245
Process fixes 248
Pitfalls 249

The consolidated physical model 249
The reality check 252
Work structure made real 253
Movement and access 254
Partial automation 255

Contents

Process fixes 256
Pitfalls 256

Consolidated sequence models 256
What the user is up to 259
How users approach a task 261
Unnecessary steps 262
What gets them started 263
Process fixes 263
Pitfalls 264

Consolidated artifact models 264
Why it matters 264
What it says 265
How it chunks 267
What it looks like 268
Pitfalls 268

Using metaphors 269
Using models for design 270

C H A P T E R 1 3 Design from Data 273

Walking the data 275
Priming the brain 276
Creating a vision 277
Creating a common direction 282
Making the vision real 285

Process and organization design 285
Marketing plans 286
System design 286

Storyboards 287
Redesigning work 289

Part 5 System Design 293

C H A P T E R 1 4 System Design 295

Keeping the users work coherent 295
Breaking up the problem breaks up the work 298
A system has its own coherence 299

Contents

The structure of a system 301
Designing structure precedes UI design 303

The User Environment Design 306
Representing the system work model 310
The User Environment formalism in the design process 311

C H A P T E R IS The User Environment Design 317

The reverse User Environment Design 323
Building the User Environment from storyboards 325
Defining a system with the User Environment Design 337
User Environment Design walkthroughs 341

Probing User Environment Design structure 342

C H A P T E R 16 Project Planning and Strategy 347

Planning a series of releases 348
Partitioning a system for implementation 354
Coordinating a product strategy 358
Driving concurrent implementation 361

Part 6 Prototyping 365

C H A P T E R 17 Prototyping as a Design Tool 367

The difficulty of communicating a design 368
Including customers in the design process 370
Using paper prototypes to drive design 371
Prototyping as a communication tool 376

C H A P T E R 18 From Structure to User Interface 379

Using the User Environment Design to drive the UI 379
Mapping to a windowing UI 380
Mapping to a command-line UI 383
Mapping to UI controls 387

A process to design the UI 389

Contents

C H A P T E R 1 9 Iterating with a Prototype 393

Building a paper prototype 393
Running a prototype interview 396

Context 396
Partnership 397
Interpretation 398
Focus 400

The structure of an interview 401
Setup 401
Introduction 402
Transition 403
The interview 403
Wrap-up 406

The interpretation session 408
Iteration 409
Completing a design 410

Conclusion 413

C H A P T E R 2 0 Putting It into Practice 415

The principles of Contextual Design 416
The principle of data 416
The principle of the team 417
The principle of design thinking 420

Breaking up design responsibilities across groups 421
Addressing different design problems 424
Team structure 428
Maintaining a strategic customer focus 430
Handling organizational change 432
Designing the design process 436

Afterword 439
Readings and Resources 443
References 449
Index 459
About the Authors 471

This page intentionally left blank

Preface

hen Hugh and I first started our consulting business, we won-
dered if we should write a book right away. Every consulting

firm needs a book, we thought. But Larry Constantine, our mentor in
the consulting business, said, "Wait awhile, until your experience is
richer." Five years later, Contextual Design, while still evolving and
improving, is robust in ways we would not have imagined because of
the questioning of our teams and the demands of their corporate con-
texts. And we are more seasoned, more insightful, more realistic, and
more humble.

I do not think we in the industry realize how amazing it is that
software and software/hardware systems get built and shipped at all. I
remember the first time I looked into the guts of a really big comput-
er. I saw thousands of electrical connections, any one of which might
shut down the system or produce incorrect calculations. How could
we ever get it right—let alone achieve the targeted reliability? The
design and shipping of anything is a phenomenon and a tribute to our
creative and organizational skills. Remember, we were the same kids
who fought to be in the front seat, not the back; who got mad if
someone told us what to do; who were graded on individual achieve-
ment and contribution—not the stuff of collaboration.

We were taught that we should and could create, change, and
shape the future of the world with our technology. Despite all our
complaints about usability and engineering-driven organizations, all
the rework we do throughout the life cycle, all the times we signed the
requirements docs only to be told we built the wrong thing, all the low
expectations of first versions, all our frustrations and work-arounds—

w

Preface

we have changed the face of everyday work life for the better. As an
industry we should pause to applaud ourselves.

But we know it is not enough. Commercial and IT organizations
alike know that to be competitive and to achieve the goals of our busi-
nesses we must drive an understanding of our customer right into the
center of our development processes: how customers work, how they
buy, and what they will be doing in the future. We know that the
future success of our businesses necessitates a commitment to under-
standing the customer and understanding business. Making these two
things real within organizations is what Contextual Design and
InContext's work is all about.

Hugh and I (and many of you) are part of a larger movement.
Any field seems to move in a direction pushed by its participants and
pulled by sources hard to identify. Ten years ago, when I started work-
ing with computers and usability, customers were drawn into the
design process to check the design at the tail end—but not to drive it.
In most commercial companies, marketing wrote marketing messages
to convince a market they would benefit from the product idea engi-
neering thought up with little input from customers. Design conver-
sations barely touched on how to match the structure of user work to
the structure of the system. Today s challenge is in front-end design—
the idea that the voice of the customer must be heard before we start
to build.

But it is a struggle. Any change is a struggle. Engineers used to
making what they are interested in feel constrained by having to think
about what is useful and can sell. We all have to hold back the voice
that tells us that producing code is progress—even if we cancel the
project, even if it is the wrong code, even if we don't know what would
be useful to code. How does understanding work produce code? It is a
struggle of personalities as we try to work in cross-functional teams to
produce a shared direction. It is hard to remember that one smart guy
working alone probably doesn't have the whole answer. We simply have
to realize that design is about people working together, and that's what
makes it hard.

I remember the first design team I worked with. I barely knew
what a computer was, but I jumped in to help a team designing a very
large and expensive computer. They were stuck, not on the guts of the
engine, but on the control panel! So I listened to six engineers arguing
about how to lay out the switches: "Won't we crash the system by

Preface

accident if the remote selection is on the same switch as off?" "Oh,
they'll only do that once." And whether or not there should be a key
in the switch: "Security is important." "No, it isn't." "Yes, it is." As I
listened, I realized that the team simply had no ground for their deci-
sions. There was no way that reasoning and argument could get them
to an answer. So I collected some data on how the panel was used:
"Are you kidding? We won't touch the remote. Someone might crash
it." "We turn the knob very, very slowly." "Someone crashed it once,
and the whole business stopped. No one touchs that knob now." And
on security: "The computer is in a locked room; we don't need it
locked." "Locking is a pain. We keep losing the key." "We keep the
key taped to the computer so we can find it." "I catch my clothes on
that lock; it sticks out." The design was done in a day. We had a new
switch for on and off and stopped agonizing about the key. I recently
ran into a member of that team. He said he still talks about what hap-
pened 10 years later. The power of simply having data.

Contextual Design was developed to be sure we make the right
thing for customers, but it was also developed to help people stop
agonizing and move on. Designers and engineers want to do the right
thing, and they agonize to try to figure out what it is. But there is no
direction without customer data—data about how work is structured,
what matters to people, and real characterizations of a market. Data is
the only reliable outside arbitrator for people. This fact is the begin-
ning and the end of Contextual Design. Data is the language of shar-
ing that allows communication. Data breaks the deadlock. Data is the
source of invention because it defines the need. If we get the right
data, if we know how to roll it up to see the customer population (not
just the single person we talked to), if we know how to pull design
implications from the data, if we reuse data from project to project—
data pushes us forward to successful design within an engineering
time frame.

But what about internal systems? Classic systems design includes
the step of going to talk to the customer, much as a contractor must
go to talk to the person contracting them. To those trained in classic
systems design, it may sound foolish to make such a big deal about
starting by talking with those who will use the systems. If you are
hired by someone to make something, certainly you must go ask what
they want. But asking what they want presumes that they can really
tell you. I wanted windows in my new den, but what I really meant

Preface

was I wanted a lot of light and to see the garden. Windows come in
many types and technologies. To get light I had to listen to my con-
tractor, not just tell him what to do. And in the basement I just had it
wrong. He said that a built-in buffet where I wanted it would toss
everyone near it into the supporting poles. The fact was I didn't hire
my contractor to do what I said, I hired him (I found out) to partner
with me in figuring out what I should build. Data about work prac-
tice and knowledge of technology is the shared conversation of cus-
tomers and systems designers. I believe that this is what participatory
design is really all about. Ten years ago the user movement in IT was
the Joint Application Development (JAD) session. But classic JAD
focuses on the contracting aspects of the relationship—not the co-
design aspect of the relationship. Today, JAD sessions are getting to be
more like design meetings but often without the necessary contextual
work practice data. And today, contextual data is filtering into busi-
ness analysis.

But in some ways, IT is too close to its customer because the cus-
tomer pays their bills. Meeting the needs of the department paying
your bill is not the same thing as helping the business as a whole move
forward. Object modeling, enterprise modeling, and process reengi-
neering are trying to address seeing and designing the corporate prac-
tices as a whole. But how do you see a whole process from the point
of view of everyday life experience, and how do you do it with enough
detail so that the big decisions turn into reasonably usable software
once it hits the worker's desk? This is what we are faced with today.

Contextual Design grew up, and is growing up, inside these his-
torical and organizational forces. It is the reflection of these forces,
and it is one of the forces pushing us toward customer-centered orga-
nizations—not just customer-centered systems. In the end, real inven-
tion fills a need, and figuring out how to fill that need with technolo-
gy can seize the imagination of an engineer. Meeting a real need
makes money directly through selling products or indirectly through
supporting efficient businesses. So being customer-centered means
change, but it also brings all corporate goals together.

Contextual Design is about how to use data for design in organi-
zations that make things. This book is about what we now know. Ten
years ago, as far as I knew, no one thought we needed field data to do
design. (All my papers on field techniques got rejected!) Now, most
think we do—and now we need to know how to get it and what to do

Preface

with it. This book is the result of our dialogue with the forces in the
industry and the real people on our teams. And as you take it and use
it, in whole or in part, you will change it again—because that is what
industry change is about: creating our own reality by stealing and
transforming ideas from others.

A C K N O W L E D G M E N T S

Many thanks to the following people:

John Whiteside, who started me off in this industry and had the fore-
sight to know that we needed to do something else to get real product
transformation

Sandy Jones, my first partner in making my ideas about field data real
and coauthor along with Steve Knox and John Bennett of the first
Contextual Inquiry (CI) course

The whole original SUE group at DEC—Sandy, Dennis, Chauncy,
Michael, Tom, Elliot, and Alana—who listened, learned, spread the
word, transformed, and pushed CI

John Bennett, my first mentor, who pushed me into the CHI com-
munity and helped me write my first published words about a contex-
tual perspective

Jonathan Grudin—always a champion, without whose challenge there
would never have been the much republished and used CI paper (I
admit I respond to dares)

Lou Cohen, who introduced me to all the concepts and processes of
quality from which I stole shamelessly and who nagged me into mak-
ing the first CI course

Russ Doane, who was the best internal marketer for CI I ever met

Alfonsio Dilanni, for being himself

Preface

Every team at Digital who used, argued with, and transformed what
eventually became Contextual Design (CD)

Martin Dickau, who said, "—huh?" when I first explained how to
think about work practice. I went home and developed the work
models.

Larry Constantine, our consulting business mentor, who helped us
learn to write, publish, and believe in our work

Those first clients and our champions: Irene Wong, Deb Fromholtzer,
Dennis Allen, and the guys from Fluke

Every client we have ever had—those we liked and those we didn't—
for trying what we told them and making it work, and for getting
stuck and making us face what wasn't good enough

Mike Q , for asking us to make our process fit his organization, for
wishing for C D Lite. (We think we have it now—see the last chapter.)

Every coach we trained, for every question you asked and every clarifi-
cation you wanted. Forgive us our impatience.

Every consultant and designer who ever took our ideas, used them,
and spread them in many different forms. All we ask is acknowledg-
ment!

Every academic who had their class read our stuff—even if you don't
think it is perfect.

Every process consultant, designer, or academic who we ever stole an
idea from (we hope we referenced you all). Do more so we can steal
more.

Diane Cerra, our editor, for her nagging and encouragements—and
great dinners

Preface XXlll

Every reviewer of this manuscript who made this book usable (we
hope!)

To our spouses—Les and Ivy—and children—Ari and Shoshie, Char-
lie, Lily, Frankie and Lucy—who lost lots of attention over the last
year

To all of you, we give our heartfelt thanks and appreciation—and ask
amends for any past neglect, abuse, mistakes, and arrogance.

And finally—from me to you, partner—for every word, for tying our
ideas to the page.

Karen Holtzblatt

This page intentionally left blank

Introduction

Developing software has never been easy. But over the last 20 years
the requirements for software development have gotten far more

stringent. Once computers were used by experts in glass rooms; now
everyone on the street expects to use a computer to get their jobs done.
Once computer users knew and liked technology; now users want their
computers to be as invisible as a ballpoint pen so they can focus on
their jobs. Once applications supported a single, bounded task—com-
pute compound interest for a bank's loans, perhaps; now they are
expected to support the whole work of the business, from electronic
funds transfers with the Federal Reserve to the company's email system.
Its no longer enough to be a good software engineer. To be successful
in todays world, those who define and build hardware and software
systems1 must know how to fit them into the fabric of everyday life.

Commercial software vendors recognize the reality of the new situ-
ation when they emphasize "solutions" over products. Traditionally,
new products were most often defined by an engi-
neer getting a bright idea, building it, then looking
for a market for it. But the new demands of the mar-
ket suggest that the new product wont be accepted if
it doesn't fit with customers' other systems and exist-
ing ways of working. Customers are looking for an
integrated set of products that solve whole work problems, not point
products that don't work with anything else, that don't seem to solve
the problems they have, and that are too hard to use.

Commercial product vendors are one major segment of the soft-
ware development industry; the other is the Information Technology

For simplicity's sake, we use "system" to refer to any combination of hardware and
software used to deliver a product, application, or computer platform.

The challenge of system

design is to fit into the

fabric of everyday life

2 Chapter 1 Introduction

Contextual Design is a

backbone for organizing a

customer-centered design

process

(IT) departments, building the systems that run a company. Their
customers2 are the people actually doing the work of the business. The
new user expectations have hit IT departments just as hard as com-
mercial vendors. Taught by the ubiquitous desktop systems, their cus-
tomers expect that all systems will be as easy to use. They expect to be
able to 2iCCQss and manipulate corporate data from the PC on their
desk as easily as they access their own desktop files. When they can't
get the systems they want, these customers decide that the IT depart-
ment is out of touch, has far too long a response time, and too often
delivers systems that can't be used. Then the customers change direc-
tion, cancel the IT project, and buy some desktop solution off the
shelf—which they expect the IT department to maintain. The IT
department responds with processes designed to help them manage
the demands on them: Joint Application Development (JAD) sessions
to clarify requirements, formal sign-off to control changes, and enter-
prise modeling to recapture some of the initiative. But in the end it's
the customers' system, and there's a limit to how much these processes
can keep them from changing their minds.

The problems both kinds of organization are struggling with have
the same root. Requirements engineering—front-end design—systems

analysis—whatever the term used to describe the
activity, the hard underlying problem is determining
what to build to help people do their work better
and specifying it at a level of detail that developers
can code to. Customer-centered design promises a
solution, but taking advantage of it leads quickly to
questions about the nature of systems development

and the organizations that practice it. What is the right way to define
new systems? What's the relationship between those who say what to
build and those who build it? How do we make sure the system speci-
fication defines something the customers really want? And how do the
different parts of an organization work together to invent and deliver

We'll use "customer" to refer to anyone who uses or depends on a system—it's a
more inclusive term than "user," which we'll use only for those who interact with the
system directly. There's some dispute as to whether the "customer" or the "user"
should be primary in the design process. Some worry that the term "customer" leads
the design team to focus too much on those who pay for a system, rather than those
who use it. We recognize that danger, but also recognize that a system must meet the
needs of all those who depend on it, and so prefer the more inclusive term.

The challenges for design

a coherent system? An approach to system design that hopes to have
an impact on real organizations must be able to answer these ques-
tions. (See "Readings and Resources'5 for additional perspectives on
the problem.)

Contextual Design (CD) is an approach to defining software and
hardware systems that collects multiple customer-centered techniques
into an integrated design3 process. Contextual Design makes data gath-
ered from customers the base criteria for deciding what the system
should do and how it should be structured. It makes deciding how
customers will work in the future the core design problem and uses
those decisions to drive the use of technology. It unifies all an organi-
zation's actions into a coherent response to the customer. And it
defines activities focused on the customers and their work, rather than
leaving team members to argue with each other based on personal
opinion, anecdotes, or unverifiable claims about "what customers
would like."

THE CHALLENGES FOR DESIGN

Making customer-centered design practical for real engineering orga-
nizations depends on striking a balance among multiple considera-
tions. For customer-centered design to be possible at
all, the process needs to include techniques for
learning about customers and how they work. This
means that we must discover the everyday work
practice of people. But anyone's real work practice is
intricate and complex; understanding it in depth

Collect and manage
complex customer data
without losing detail

leads to an overwhelming amount of immensely detailed information.
One typical response to such large quantities of data is to "reduce"
it—perhaps by summarizing the top five issues in all the data and just
responding to those. Another typical response is to decide that the
problem is too big to address—and instead to deal with one customer

Throughout this book, we use "design" in the ordinary English sense of conceiving
and planning a system. This is how Mitch Kapor uses the word (Kapor 1991). The
technical software engineering usage of "design" is different; it applies to the design
of the implementation only Since our topic is customer-centered design, we have
reappropriated the term; Chapter 11 discusses how this activity fits into the devel-
opment life cycle.

4 Chapter 1 Introduction

problem or issue at a time, respond to that one issue, and ignore the
rest. One team found 100 different user needs, grouped them into 20
application areas, and assigned each to a different team—resulting in
20 unintegrated point solutions. None of these approaches give the
design team the ability to respond to the customers' whole work prac-
tice with a coherent set of systems. The trick is to give the team tools
that let them see the breadth of data without being overwhelmed, to
see the common structure and pattern without losing the variation,
and to understand the wealth of detail without losing track of its
meaning.

Seeing customer data is critical, but so is understanding how to
design a response. In customer-centered design there are three levels of

design response that matter. First, and most impor-

Design a response that is

good for the business and

the customers

tant, is the design of work practice. If the team is to
define a new system that fits into the fabric of its
customers' lives, then the team—in partnership with
the users themselves—needs to see and redefine that
fabric. This allows them to define a new work life

that hangs together for the user. Second comes the design of the cor-
porate response that delivers the new work practice. It is not enough
to design the system alone. A custom software systems internal users
need to integrate organizational roles, business procedures, and the
system (perhaps including software, hardware, and communications
connections) that supports them. A commercial product depends on
the definition of the market message, associated services, delivery
mechanisms, and the product itself. All these different aspects must be
planned and delivered together to create a viable business. Third,
when the nature of the corporate response has been defined at a high
level, the team can design the structure of the system itself. Whether
software only or software and hardware combined, the system creates
an environment for its users to work in; it's up to the team to ensure
that that environment fits the flow of their work. The challenge for
customer-centered design is to provide for all three levels of design in
a process that guides the design team's daily actions and fits within the
constraints of the organization.

It's people who create a design and people who have to work
together to make it happen. Putting a team to work on a problem,
rather than one person, means an organization can handle larger and
more complex problems. A team has multiple skills and points of view

The challenges for design 5

Foster agreement and
cooperation between
stakeholders

to bring to bear on a problem. A cross-functional team drawn from
the departments that have to cooperate to produce a system can
account for the issues and needs of each department.
Designing effectively together depends on tech-
niques that manage the interaction between people
in a room so that they can create a unified corporate
response. But pulling a cross-functional team
together means breaking down some of the walls
between parts of the organization. Given the extreme pressure all
organizations are under to produce results quickly, the different
groups must be able to work in parallel once the corporate response is
defined, while still maintaining the coherence of the total effort.

Contextual Design deals with the issues of gathering data, driving
design, and managing the team and organizational context. It has
evolved over the last 10 years through intensive work
with teams producing products and internal systems,
and designing organizational processes. This ground-
ing in real experience has ensured that Contextual
Design takes the needs of working design teams into
account, providing methods to develop insights and
shared direction among team members at each point. Contextual
Design provides complete support for the design process, from the ini-
tial customer data gathering through the transition to object-oriented
design (or whatever other implementation model you favor). The
process brings together the techniques needed to design a system that
meets its customers' needs, while addressing the challenges of making a
design process work in real-world situations.

THE CHALLENGE OF FITTING
INTO EVERYDAY LIFE

Federal Express has changed how businesses work on a daily basis by
providing an affordable, reliable way of getting packages to another
location overnight. Spreadsheets have made elaborate numerical mod-
els commonplace, where once they were the domain of a specialist.
And even such a simple thing as the mouse and windowing user inter-
face (UI) has helped move computers from specialized tools to an
integral part of everyday work. These products and services are impor-
tant because they make new ways of working possible.

Make the process practical
given real time-driven
organizations

6 Chapter 1 Introduction

Support the way users

want to work

These examples suggest that the critical aspect of a new product
or service is the new way of working that it enables. But what does it
mean to enable a new way of working? How is it that a system might
support or disrupt work practice?

Consider the true story of one user trying to do a simple task: A
user of a standard office system needs to print a label. From her point
of view, this should be simple. She should write her letter, putting the
address at the top. She should tell the computer to print an address
label, and put a label in the printer. The computer should get the
address from the letter and print it on the label. This is her user work
model for the task: these are the concepts she uses and the strategy she
takes for granted to get her label printed. If they were built into her
systems, her work would be straightforward.

Instead, the system offers its own system work model which impos-
es new distinctions and a style of work foreign to her. She writes the

letter, with the address at the top, but she can't just
print the label from that address. First, she must cre-
ate a separate document containing only the address
so it will print properly on her labels. She copies the
address from the letter to this separate document.

She tells the system to print the document, remembering to say that it
should use the manual feeder. It will use the sheet feeder if she forgets,
even if she's put a label in the manual feeder (it's easy to forget). She
waits for the system to realize that it has to ask for the next sheet. (She
must not insert the label before the system asks, or the printer will spit
it out without printing on it.) When the dialog box comes up saying
the "print manager" (the what?) has a problem, she dismisses the dialog
box and switches to the print manager application. She cannot tell the
print manager to continue without switching to it. She goes to the
printer (which is across the room), takes it offline, inserts the label, and
puts the printer back online. (If she inserts the label without taking the
printer offline, it spits it out without printing on it.) She goes back to
the computer and dismisses the dialog box requesting a new sheet of
paper to print on. (It will not sense that she put a label in.) Finally, she
switches back to her application.

Printing a label is a conceptually simple task. But this system pre-
sents an enormously complex model for it. It introduced many new
steps, driven by the concepts of technology, not by the needs of the
work. It introduced new concepts that the user must understand to

The challenges for design 7

get her job done: What's the print manager, and how is it different
from an application? How do you switch applications? If the print
manager can put up a dialog box asking the user to switch to it, why
can't it also say what's wrong? If the system can tell there's no label in
the printer, why can't it tell when there is a label in the printer? What's
the distinction between on- and offline? How is that different from on
and off? The system's model is hard to understand because it makes no
sense in terms of the work people are trying to do. And the net result,
of course, was that this user never did use the computer to print
labels. The new work practice was so foreign and cumbersome she
preferred to continue writing labels by hand.

This system supports work poorly. It is poor not because func-
tions are missing but because the system imposes a work model that
does not make the job more efficient and does not
match the user's expectations. The designers of this
system had no choice about imposing a way of
working. Any system imposes a model of work. The
only choice designers have is whether they will
design that work model explicitly to support the
user or whether they will allow it to be the accidental result of the
technical decisions they make. This model of work was created by the
interaction of multiple tools designed by multiple groups in several
organizations. No job, even one as simple as printing a label, is
accomplished with a single tool. Design has become difficult because
systems now support almost every aspect of work life. It's up to the
design team to understand the environment their tool will be used in
because it is the combination of tools that controls their customers'
work practice. (See Terwilliger and Poison [1997] for related research.)

C R E A T I N G A N O P T I M A L M A T C H
TO T H E WORK

Does this mean that a new system must match its customers' existing
work practice exactly? Certainly not—that would be a sure path to fail-
ure. But systems must match the user's model closely enough that the
user can make the transition. History is littered with excellent innova-
tions solving real problems that have never been adopted because it is
simply too hard to switch models. The Dvorak key layout will increase
your typing speed—if you are willing to retrain your fingers and accept

Dont increase work and
frustration with
automation

Innovate through step-by-

step introduction of new

work practice

Chapter 1 Introduction

incompatibility with virtually every keyboard in existence. Switching
to D C current in your home ^///eliminate the risk of electrocution to
you and your family—if you are willing to install a converter and
replace every appliance you own. Neither idea has gone anywhere
because the cost of change is too high.

Then how can a design innovate successfully? By taking one step
at a time, always considering the interaction between the new ideas

and the current work practice. Consider the history
of the word processor. Originally, everyone used
typewriters, and typing became the work model
users understood. Early word processors stayed close
to the typewriter model. They just provided better
typing and better correction. Then word processors

introduced cut and paste—metaphors taken from the physical opera-
tions of cutting with scissors and pasting with glue, something every-
one had to do already. These features were an easy extension of the
model. Then word processors introduced multiple buffers and multiple
documents open at a time, making it easy to share and transfer text
across documents. Then they introduced automatic word-wrapping
and multiple fonts, and desktop publishing was born. Each step was
an easy increment over the previous, and each step walked the user
community a little further away from the typewriter model. Now
word processing has little but the physical act of typing in common
with using a typewriter.

The history of word processing illustrates how work can be revo-
lutionized over time. A good design provides an optimal match
between the users' current way of working and the work practice
introduced by the new system; it changes the work enough to make it
more efficient but not so much that people cannot make the transi-
tion. Innovative designs that succeed are those that offer new ways of
working and new advantages while maintaining enough continuity
with people's existing work that they can make the transition.

Determining what makes an optimal fit is a decision for the
design team; there's no absolute right answer. It's part of the design
process to decide how to integrate an innovation into the customers'
work practice so smoothly that they can successfully adopt it. In
customer-centered design, we seek a framework for the discussion so
that the decision is based on customer data, and a way to check the
decision with the customer.

The challenges for design 9

K E E P I N G I N T O U C H W I T H T H E C U S T O M E R

If designing from an intimate understanding of the customer is so
basic, why is it so hard to achieve? As product development compa-
nies grow, they create organizations that have the

Organizational growth
isolates developers from
customers

effect of keeping designers away from their cus-
tomers. A start-up expects their developers to help
make the sale by talking to potential clients. But, as
it grows, it develops a sales organization to handle
the customer interface; it puts account representa-
tives in place to control the sales organization; and it puts marketing
and product management organizations in place. All this tends to
keep developers away from even the salespeople. A start-up puts devel-
opers on the customer support line. But, as it grows, a whole organi-
zation takes over the customer support function, with a formal inter-
face for providing feedback to development. Developers are isolated
from immediate customer feedback about how they are doing. We've
talked to developers so isolated from their customers and so powerless
to make changes that they didn't even want to talk to customers
because they didn't think they could fix any problems they found.

IT departments have difficulty staying close to their customers for
a different reason. They, too, tend to become isolated from their cus-
tomers as the company grows, but the different solu-
tions available to them each come with attendant
problems. They create new roles—business, systems,
or requirements analysts—to translate between cus-
tomers and developers, but find that customers still
believe the IT department doesn't understand their
business. The additional layer doesn't create a close working relation-
ship with the customers, and it doesn't create a clean handoff to devel-
opment.

To control shifting requirements, IT departments put sign-off pro-
cesses in place, but customer priorities and requirements still change.
Then they situate developers with the people in the businesses they
support, so they are closely involved with the work of the business.
This improves the client relationship, but it means the IT department
can't share resources or expertise and can't take a strategic role looking
across the whole company's information systems. So they decide they
are too fragmented and pull everyone back together again, reintroduc-
ing the problems of isolation.

Sitting with the users

makes cross-departmental

projects hard

10 Chapter 1 Introduction

This kind of oscillation is typical in IT departments, but in the
end it misses the point. Any arrangement of people comes with its
attendant problems—the only solution is to recognize the problems
and address them. The IT department needs some distance from the
customers to see across the stovepipes created by the different depart-
ments and plan systems that address the business as a whole (along
with a way to fund such systems). At the same time, they need mecha-
nisms that keep them in close partnership with their customers.

This is the challenge for Contextual Design: to make a design
team's understanding of their customer explicit and give them enough
distance to see the work practice as a whole, across the business or
across a market. Yet at the same time, the process must keep the
design team thoroughly grounded in the knowledge of what's real for
their customers.

THE CHALLENGE OF DESIGN

IN ORGANIZATIONS

Who gets to say what a system will do? Is it really the marketing
department or systems analysts saying, "Build this," with the engi-
neering team just following their specification? Or do marketing or
the analysts really only say, "Make this kind of a thing," with the engi-
neers actually deciding what they will build and how the system will
work? In fact, both sides have a role to play in saying what a new sys-
tem will look like—the creation of a system in real organizations is the
outcome of their cooperation.

The underlying problem is inescapable. Today's systems are too
large to be built by a single person. So organizations divide the process

of defining and building a system into parts and

Breaking up work
across groups creates
communication problems

assign each part to a group of people. The people in
each group specialize in their own part and lose con-
tact with what all the rest are doing. There are four
questions to answer in the course of developing a sys-
tem, and these questions tend to define natural

breaks in the development process, so it's easy to assign one group to
answer each question. The questions are, What matters in the work—
what aspects of work should be addressed? How should we respond—

The challenge of design in organizations 11

what kind of a system should a team respond with? How should the sys-
tem be structured—what exact function, arrangement of function, and
system structure best meets the needs of the work? And how are we
doing—does the system as designed actually work for the customers?

The first question (what matters?) asks what aspects of the cus-
tomers' work practice a new system should address, what issues or
problems should be overcome, what roles and tasks
are important to support. The group tasked with
answering this question is typically marketing or
business analysts. When management changes an
organization, they often define what matters for its
information systems in directives. "Too much over-
head goes into approving purchases," they say. "Give every group a
credit card and authority to use them." Or, "Our chemical databases
are our lifeblood—tie together all the databases across the company."
Or marketing might tell their engineering group, "Design a product to
support business planning," or "Put this product on the Web." These
directives say at a very high level what work issue the system should
address, but don't really define the system. What aspects of a product
are affected by putting it on the Web? Does tying databases together
mean one database, replicated databases, or a way to search across mul-
tiple databases? From the point of view of those setting direction, these
questions are details; it's not their job to answer them.

Answering these questions means saying what the response will
be: how the corporation will coordinate to respond to the issues with
system designs, processes, services, and delivery strategies. Marketing
may be part of defining the response unless the company is very
engineering-driven. Requirements analysts may do this unless they are
very nontechnical, in which case developers will drive it. The cus-
tomers themselves should be involved with an internal system, since it
defines how they work. A research or architecture group may drive
defining a response. Marketing and analysts may have the formal
charter to "develop the specification for the system," but in our expe-
rience they don't really define system behavior to the level of detail
needed to write code. "They give us a specification," the developers
tell us. "But there's always lots that we have to decide, and they usual-
ly ask us for things that are really impractical. So it's give-and-take."

Deciding how to structure the system means deciding exactly
what function to include, exactly how the system will behave, and

Different organizational
functions focus on different
parts of a coherent process

12 Chapter 1 Introduction

Every function needs
customer data, but it has
to be the right kind
of data

Data showing what is

wrong is frustrating if

builders cant fix it

how it will appear on windows, menus, or screens. This is nearly
always done by developers, which means they need to understand the

whole work context in which the system will be
used. Otherwise they cannot make decisions that are
appropriate for the customer. Developers don't get
customer data at this level of detail from their mar-
keters or systems analysts. Working out the detailed
system structure depends on an additional level of
customer data that developers have to get them-

selves—or design the system based on what feels right to them. Some
companies have gone so far as to put the development group in a dif-
ferent state from their users and analysts, to create a group focused on
its development work. But that just creates a greater need for commu-
nication and causes more serious isolation when travel budgets are cut.

The final question for design asks, How are we doing? This ques-
tion checks the progress of the system with the customer to ensure

that it's still the right system, and low-level changes
haven't made it unusable. This question is often sep-
arated out and given to a usability or Quality Assur-
ance group to test. Answering the question looks at
the system itself (for bugs and fit to the specifica-
tion) and tests the system with users. But in either

case, dealing with the results is the job of the developers. So they have
to receive, understand, and believe in the feedback—which means
they have to buy into the process of getting it and trust the group that
collects it. And often, when there's been no real design from data so
far, the flaws discovered at this point are so fundamental they cannot
really be addressed at this stage of development.

All these different parts of defining what a system will be have to
come together if the system and design process are to work. The peo-
ple defining the response have to respond to real work problems; the
people building the system have to build the response they agreed to.
But keeping each part isolated to its own group creates communica-
tion problems across the organization. The formal documents in engi-
neering processes capture the evolving design, but also are intended to
manage the communication and disagreement between groups. "You
signed off on this specification. That means you're committed to it."
"Yes, but we've reorganized and don't need that anymore." Or, "Yes,
but we talked to this important customer and there's just no point in

The challenge of design in organizations 13

Cross-functional design
teams create a shared
perspective

shipping if we can't meet this need." Or, "Yes, but it's not possible to
implement that given the technology we have."

Design in organizations is about developing a coherent direction
across all the groups: agreement on the corporate response they intend
to deliver. It's not that changes will never happen—
it's that when changes happen, the whole organiza-
tion can respond appropriately across all functions,
rather than turning the changes into an argument
between two groups. In turn, a coherent view de-
pends on taking account of all the different perspec-
tives during the development of the corporate response. Marketing
and analysts need the technical perspective to see opportunities for
new kinds of systems. Engineering needs the marketing perspective to
see why some directions make a good product and others don't. They
need the analyst's perspective to see the work issues they might
address. An IT team needs the customer's perspective to ensure their
proposed changes to working procedures are reasonable and will be
accepted. After they've developed a corporate response, they can work
in parallel for efficiency without losing the single direction. But in up-
front design, a cross-functional team works best.

T E A M W O R K IN T H E P H Y S I C A L
E N V I R O N M E N T

Creating a cross-functional team that does design work together runs
into some surprising problems in real organizations. Consider the
most basic question: where is such a team to meet?
A quick look at the physical structure of most orga-
nizations would make you think they are designed
to keep people apart. The most common work envi-
ronment for a developer is the cubicle—an area big
enough for one person to work in comfortably, con-
taining a terminal and a desk. But it is not big enough for several peo-
ple to work together comfortably, and it does not have the wall space
to support group work. Meeting rooms do exist, but a meeting room's
key characteristic is that it is shared and booked by the hour. Because
it is booked by the hour, the only work that it supports is that which
can be completed in a short time—a half day at most. Start booking
rooms for longer than that on a regular basis, and you get dirty looks

Organizations have no
real spaces for continuing
team work

14 Chapter 1 Introduction

Face-to-face work

depends on managing

the interpersonal

from your coworkers. After all, you are hogging a shared resource. Not
only that, but because the room is shared, you can't leave much stuff
in it. Every conversation has to restart from scratch, and every meet-
ing has to start with spreading out all the design diagrams again.

So the only work a meeting room supports is work that can be
completed in a few hours and that does not require much physical
support—no hardware, no charts, no diagrams, nothing you cannot
roll up in a few minutes and take with you. Maybe there's a network
hookup—but to which LAN? And is it still good? And how do you
hook this laptop PC to it anyway? Given these constraints, is it any
wonder that designers and engineers consider meetings a waste of
time? The very physical structure of a typical large corporation
announces plainly that real engineering happens alone in cubicles and
that when people gather in a meeting room, they are not doing real
work. There's nothing in the usual structure of organizations to sup-
port the face-to-face needs of initial system design.

MANAGING FACE-TO-FACE DESIGN

Working together effectively means having workplaces where real work,
done by multiple people working face-to-face, can happen. It also

means giving these people the interpersonal skills and
process to make their sessions effective. One division
manager addressed a particular thorny problem by
booking rooms at a local hotel, sending his five senior
architects there, and telling them they were fired if
they didn't come up with a solution in a week. He got

a result, but we find people are usually happier, more creative, and pro-
duce results more quickly if they have a reasonable process to work in.
The typical response to having a process—even from people who "hate"
process—is, "Thank you. Now I finally know what to do."

Working together is a new skill; it is not something taught in
schools and is rarely taught on the job. Working together effectively
means understanding how to keep a design conversation on track, how
to focus on the work issue and not each other, how to manage every-
one's personal idiosyncrasies, and how to uncover and address the root
causes of disagreements. Unless teams learn to do this, their designs
suffer because the models people have for handling disagreements trade
off coherence of the design for keeping people happy

The challenge of design in organizations 15

One primary model people have for handling disagreement is
horse trading: "I think you're wrong on that. But I'll let you have it if
you'll give me this other thing that is really important to me." Horse
trading leads to a system that is a patchwork of features, with no
coherent theme. And horse trading causes everyone on the team to
disinvest from the design because everyone has had to agree with at
least one decision they thought was fundamentally wrong.

Other models for handling disagreement exist, but most don't
work any better. There's the compromise model, which says, "You say
we should design everything as dialog boxes. I think
everything should be buttons. So we'll implement
both and make everyone happy." Everyone is happy
except the user, who has a dozen ways of doing each
function and no clear reason to choose one way
rather than another. Or there is the guru model, which says, "The
guru is smart and knows everything. We'll all do what the guru says."
That is fine, except the population of gurus who are infallible on tech-
nical architecture, GUI design, user work practice, marketing, project
planning, and the host of other skills necessary to get a product out is
vanishingly small.

Contextual Design defines a process for developing systems that
takes the interpersonal issues into account. It defines procedures for
deciding among design alternatives based on data,

Disagreements can lead

to an incoherent design

Customer-centered

design keeps user work

coherent by creating a

well-working team

not arguments or horse trading. It defines roles for
people to take on during design sessions that keep
the discussion on track. It does this not only to
make the design process more efficient, but because
when people argue and have no process for making
decisions, it pulls the system apart.

Front-end system design forces us to address interpersonal issues
because it's in this part of the design process that bringing different
functions face-to-face matters so much. Traditional design draws less
heavily on the skills of working together. Committing to keeping the
customer work coherent despite the different perspectives and skills
on the team makes knowing how to work together critical. We find
that when people have a clear process and clear roles to play, when
they become sensitive to the individual styles that cause them to clash
in the room, and when they have concrete data to base decisions on,
they can overcome the barriers to working together effectively.

16 Chapter 1 Introduction

This is what it means to be customer-centered: not only does cus-
tomer data drive design, but the design process leads to a system that
keeps the users' work coherent in the system, from invention through
implementation. The challenge for Contextual Design is to build in
techniques that recognize the issues around working together and pro-
vide ways to do so effectively.

T H E C H A L L E N G E OF D E S I G N

FROM D A T A

Design is a cognitive activity. It is thought work. It begins with a cre-
ative leap from customer data to the implications for design and from

implications to ideas for specific features. A clear

Learn how to see the
implications of customer
data

Recognize that designing
from customer data is a
new skill

understanding of the customer doesn't guarantee any
kind of useful system gets designed and delivered.
Design depends on being able to see the implica-
tions of data. In many of the classic stories about the
development of new systems in the computer indus-

try, inventors were responding to their unarticulated sense of what
was important based on their own experience. Ken Olsen was an engi-
neer building digital circuitry. He knew other engineers would buy
smaller computers if they were available and invented the first mini-
computers. Dan Bricklin learned accounting while getting his MBA.
He knew accountants would use automated spreadsheets and invented
VisiCalc. These entrepreneurs responded to their experience with
potential customers by designing systems to meet their needs.

These pioneers also knew how to see how the implications of their
customer knowledge and the possibilities of technology could trans-

form the way people work. But companies are now
designing larger systems and systems that support
people who are "not like us" and whose work "we do
not do." That's a harder problem. Seeing how
knowledge of other people s work should change a
design is a skill and a new way of thinking for many

people. Even hiring a customer into the development team doesn't
guarantee the skill—most customers don't have in-depth knowledge
of the technology. Just as moving from procedural to object-oriented

The challenge of design from data 17

design is a new skill requiring a new way of thinking, just as moving
from forms interfaces to windowing interfaces is a new skill, moving
to customer-centered, data-based design is a new skill. Coders who are
new to object-oriented languages and UI designers new to windows
tend to continue operating out of their old way of thinking—they
create code or user interfaces that still reflect the old structures. In the
same way, people who aren't used to designing from data don't find it
natural to see design implications in data. Much of Contextual
Design—and much of this book—is intended to help designers see
design implications in customer data.

The idea that design isn't inherent in data tends to be lost when
we talk of requirements gathering or elicitation. When someone checks
his answering machine as soon as he walks in the
office in the morning, this action says he wants to
know at once who has tried to reach him. For a
communications tool, this piece of data might sug-
gest that an immediately visible notification of wait-
ing messages is critical, perhaps by putting a blink-
ing red light on the box. But nothing in the
customer's environment declares a requirement for a blinking light.
Requirements and features don't litter the landscape out at the cus-
tomer site. Designers have to make this leap from fact to implication
for design. And because design is implied by the customer data, what
designers see in data changes based on what they are designing—a
maker of office chairs would be more interested in whether the cus-
tomer sat down before playing his messages. Making the shift to data-
based design asks designers to learn to draw design implications out of
the work, rather than implementing enhancement requests.

Dont expect to find
requirements littering
the landscape at the
customer site

T H E C O M P L E X I T Y OF WORK

A design team reacts to their understanding of the customer by
designing a solution. This isn't primarily a design for technology—
how to structure and deliver a particular tool that
will improve work in some way. It's the design of a
new way of working that is supported by technolo-
gy. We saw in the label story above that when tech-
nology is the focus for design, the work practice falls
apart, and the user has to run back and forth

The complexity of work

is overwhelmingy so people

oversimplify

18 Chapter 1 Introduction

A systemic response—not
a list of features—keeps
user work coherent

between computer and printer to print a label. Instead, a customer-
centered design process makes work practice the focus for design. All
the rest of the design elements fall out of this. But it's a difficult trans-
formation for the engineer who is used to looking for ways to apply
neat technology.

Designing work practice is a daunting task because any real work
is complex and intricate. What's really involved in writing a letter?
When do people decide to start fresh, and when do they start from a
previous letter they wrote? How do people choose the style of a letter,
and how do they maintain it throughout? What's involved in keeping
an address book, choosing an address from it, and inserting it into the
letter? "Writing a letter" is one simple aspect of office work, yet who
really understands what's involved? But to support these customers
well, designers must understand work at this level. Unless they can see
and manage the complexity of real work, they can't keep it coherent
for the user.

M A I N T A I N I N G A C O H E R E N T R E S P O N S E

If work is to remain coherent, the system work model had better hang
together. It's not good enough to get the five top issues or the three
key market requests and respond to each separately. After five years of
that, companies are saying to us that they no longer know what all the
systems they have do or how they might fit together. To keep from
losing control of the systems like this, designers have to respond to
work issues not with individual features but with a systemic response.
Such a response keeps the system work model coherent even when
delivery is broken into multiple products and versions.

Furthermore, it's no longer enough to design single systems in
isolation. Computer systems are now supporting so much of people's

work that understanding how they fit together is
critical—but because work is complex, the web of
systems that supports it is also complex. Currently,
most work is supported by a combination of sys-
tems so complex that no one really understands it.
Consider office work again, supported by word

processors, spreadsheets, financial packages, layered on operating sys-
tems extended by add-on utilities, running on hardware from several

The challenge of design from data 19

vendors. Just try to get someone to explain to you why you can't fax
from your word processor using the third-party PC-card modem you
bought last week. It's too hard, even for the developers who control
all the parts.

The team needs to see the work practice of its users and see the sys-
tem structure as a whole. Revealing both work practice and system
structure calls for a representation that makes the
important issues stand out. Team members can inter
act over this representation, using it to present their
thoughts and capture their conversation. It's this
coherent representation that ensures the system hangs
together, supports the customer, and gives the whole
organization a single focus for parallel efforts. It's this coherent represen-
tation that continually reminds each developer how her part fits into the
system as a whole and supports the overall work flow of her users. It dis-
courages developers from focusing on one part to the exclusion of all
others, inducing them to keep the system in proportion.

Keeping a system coherent also depends on the organization that
delivers it. When development groups break the work into pieces that
they can understand individually and support each piece separately,
they produce a multitude of systems that don't hang together. They do
this for the best of reasons: they have to ship something. Develop-
ment cycles of two years and up are no longer acceptable; many teams
are moving to delivering in six-month windows. The challenge is to
accept this reality of the engineering world and still keep the system
coherent—to recognize the overall work situation and envision the
integrated solution, but deliver in small pieces that are useful on their
own but can grow up into a single solution to the whole problem.

The core of any design process is supporting design thinking: the
invention and development of ideas for a coherent system, based on
an understanding of customers' work practice. Design thinking main-
tains system coherence in the face of the breadth of complexity and
variety and the depth of detail in both the work and system. The chal-
lenge for Contextual Design is to support design thinking through
techniques that lead to developing a coherent understanding of the
work and the system's response, making both work and system con-
crete, explicit, and sharable and dealing with the tendency of organi-
zational structures to pull the design apart.

Diagrams of work and the
system help a team think
systemically

20 Chapter 1 Introduction

T H E E V O L U T I O N O F C O N T E X T U A L D E S I G N

Contextual Design grew over many years of working with design teams on different
problems. As we recognized places in the process that teams had difficulty with, we modified
the process or introduced new steps to address the problem. Hères a summary of how the
process grew.

Contextual Inquiry (CI) was the first part of the process. Karen Holtzblatt developed it as
a response to a challenge from John Whiteside: design a process that would lead to new kinds
of systems rather than iterating existing systems (Holtzblatt and Jones 1995). Prototyping and
usability testing could iterate an existing system, but couldn't suggest wholly new directions,
CI meets the challenge by putting designers and engineers directly in the customers' work con-
text» thereby giving them the richest possible data to invent from. From this beginning, inter-
personal issues were central; cross-functional CI teams developed a shared understanding of
the customer from the beginning to alleviate the transition to development. The core process
for CI was worked out with Sandy Jones by working with several engineering projects.

Contextual Inquiry produces vast amounts of detail, and managing the quantity of infor-
mation became difficult. So Holtzblatt adapted the affinity diagram process to reveal the order
and structure in the data collected during contextual interviews. This became the classic CI
process taught for many years at places such as the Conference on Computer-Human Interac-
tion (CHI).

Paper prototyping to test a design is an adaptation of Participatory Design methods, espe-
cially those developed at Aarhus University (Ehn 1988; Greenbaum and Kyng 1991), combin-
ing them with the style of interviews used in CI. Paper prototypes were introduced to iterate
designs with customers without the need to commit anything to code- In this way, a design
could be tested with minimal investment.

Working intensively with design teams revealed that when designing lor rhe customer,
there wasn't a good way to represent design alternatives. The Pugh matrix process provided a
way to envision several design alternatives and combine them to produce new alternatives,
while keeping team members from butting heads (Pugh 1991). This process, much modified,
became the visioning process in Contextual Design.

In sketching out system designs, we tended to get into unwanted arguments in the teams.
UI sketches tended to divert the team into UI design prematurely, and no other formalism
existed to show the structure of the system from the user's point of view. We developed the
User Environment formalism as a way to capture in standard form the sketches we wanted to
represent our early designs. One of the first uses of the formalism was to represent a complex
design integrating nine point products, showing each product team their place in the overall
design.

But we discovered that teams still had a hard time seeing design implications in the hier-
archical structure of an affinity diagram. An affinity doesn't show the structure or pattern of
work; it reveals issues but doesn't show how to structure a solution. Work models are a formal-
ization of informal sketches of customer work. As we used these models in different design sit-
uations, we became more confident that they did represent the key aspects of work for most
design problems, and we standardized the five that Contextual Design now includes. C^

Contextual Design 21

Finally, we found that it was too hard to lead a team through the transition from consoli-
dated models to User Environment Design; it was still too much like magic. So we introduced
an explicit visioning step to create the new design. At first we had people work out the details
in redesigned sequence models, but then found they preferred to think pictorially in story-
boards.

At each point in the evolution of Contextual Design, we had a process that worked well
enough for the problems at hand. But at each point we recognized problems we did not have a
good way to solve. Contextual Design grew by taking a problem and using our principles of
design to redesign the process to address it. Solving that problem would then reveal the next,
and so on, until the process got reasonably stable. The result of this evolution is the process
you now have. J

CONTEXTUAL DESIGN

Contextual Design is a customer-centered process responding to these
issues. It supports finding out how people work, so the optimal
redesign of work practice can be discovered. It includes techniques that
manage the interpersonal dimension of designing in cross-functional
teams and keep designers focused on the data. And it leads the team
through the process of discovering design implications for redesigning
work practice, developing a corporate response, and structuring a sys-
tem in support of the redesign.

Contextual Design provides explicit steps and deliverables for the
front end of design, from initial discovery through system specifica-
tion. As such it works well for organizations putting ISO 9000 or SEI-
compliant processes in place: well-defined steps and measurable deliver-
ables support the requirements of those standards for defined, repeatable
processes. Though optimized for large, complex projects, Contextual
Design has been successfully used on small projects as well. And be-
cause Contextual Design provides a complete structure for the front
end, teams have used it very effectively as a scaffolding into which they
incorporate additional techniques and processes as the need arises.

In our approach to process design, we recognize that much of
what we do is to make explicit and public things that good designers
do implicitly Each of the parts of Contextual Design reflects a part of
the design process that has to happen anyway—either informally in

22 Chapter 1 Introduction

CD externalizes good

design practice for a team

Talk to the customers

while they work

one person's head or publicly as an explicit design step. Making a step
explicit makes it something that a team can do together and makes it

possible to share the thinking process and results
with others. It may also make the step take longer,
but if you're currently going through a lot of argu-
ment in design and rework, making that step explicit
may well reduce the time it takes. And if your cus-

tomers are complaining about usability and integration across ap-
plications, taking the time may be what's required. Make sure, when
you look at your processes, to take into account not just the formal
time a step takes, but the amount of time it really takes in your organi-
zation. If your engineering team is still arguing over what functions
should be included in a release two weeks before test, you are still in
the requirements analysis phase no matter what your project calendar
says or how much code you've written. Deciding how you will use a
design process—which steps are critical, which can be omitted—is an
important first step for any project. (Chapter 20 gives guidance on
how to tailor Contextual Design to specific situations.)

The parts of Contextual Design, and the parts of the book that
cover them, are as follows:

Contextual Inquiry: The first problem for design is to under-
stand the customers: their needs, their desires, their approach to the

work. Even the hacker coding in the basement has
some notion of who he thinks the customers are and
what they want. A customer-centered process makes
an explicit step of understanding who the customers
really are and how they work on a day-to-day basis.

Contextual Design starts with one-on-one interviews with customers
in their workplace while they work. These are followed by team inter-
pretation sessions in which everyone can bring their unique perspec-
tive to bear on the data. This supports the team in developing a
shared view of all the customers they interview. We'll describe Contex-
tual Inquiry and how to apply it in Part 1.

Work modeling: Understanding the customer is good, but cus-
tomer work is complex and full of detail. At the same time it s intangi-
ble; work practice is not naturally a concrete thing to be manipulated.
Designers might be able to get away without an explicit representation
of a simple work domain they are familiar with. But what happens
when the work domain is complex and unfamiliar? What happens

Contextual Design 23

when it crosses multiple departments in an organization? How do you
communicate and share knowledge of a way of working? For these sit-
uations, Contextual Design provides a concrete rep-
resentation. Work models, built during interpretation
sessions, provide a concrete representation of the
work of each customer interviewed. There are five
kinds of work model, each providing a unique per-
spective on the customer. Each perspective is complete, showing the
whole work practice, yet focused on a single set of issues. These work
models are described in Part 2.

Consolidation: Systems are seldom designed for a single customer.
But designing for a whole customer population—the market, depart-
ment, or organization that will use the system—
means being able to see the common structure inher-
ent in the work different people do. Studying
different customers will give designers a feel for the
common approaches to work across the population,
but it takes special techniques to make that "feel"
explicit so that a team can see the common pattern without losing
individual variation. The consolidation step of Contextual Design
brings data from different customers together and looks across multiple
customers to produce a single picture of the population a system will
address. This is done through an affinity diagram (Brassard 1989),
bringing individual points captured during interpretation sessions
together into a wall-sized, hierarchical diagram showing the scope of
issues in the work domain, and consolidated work models, showing the
underlying pattern and structure of the work the design will address.
Together, they show what matters in the work and guide how to struc-
ture a coherent response. Consolidation is described in Part 3.

Work redesign: Any system is put in place because its designers
hope to improve their customers' work practice. That improvement is
often implicit, presented as the result of adopting
some technological solution. In Contextual Design,
the team uses the consolidated data to drive conver-
sations about how work could be improved and
what technology could be put in place to support
the new work practice. The team invents improved
ways to structure the work rather than focusing on technical solu-
tions. This vision drives changes to the organizational structure and

Represent peoples work in
diagrams

Pull individual diagrams
together to see the work of
all customers

Create a corporate
response to the customers'

issues

24 Chapter 1 Introduction

Structure the system work
model to fit the work

Test your ideas with users
through paper prototypes

procedures, as well as driving the system definition. Using storyboardsy

the team develops the vision into a definition of how people will work
in the new system and ensures that all aspects of work captured in the
work models are accounted for. (Storyboards act like stories of the
future in the sense used by Rheinfrank and Evenson [1996].) This
process is described in Part 4.

User Environment Design: The new system must have the appro-
priate function and structure to support a natural flow of work. This

structure is the system work model—the new way of
working implicit in the system. Its the floor plan of
the new system, hidden behind user interface draw-
ings, implemented by an object model, and respond-
ing to the customer work—but typically not made

explicit in the design process. In Contextual Design, the system work
model has an explicit representation in the User Environment Design.
As a floor plan for the system, the User Environment Design shows the
parts and how they are related to each other from the users point of
view. The User Environment Design shows each part of the system,
how it supports the users work, exactly what function is available in
that part, and how it connects with other parts of the system, without
tying this structure to any particular UI. With an explicit User Envi-
ronment Design, a team can make sure the structure is right for the
user, plan how to roll out new features in a series of releases, and man-
age the work of the project across engineering teams. Basing these
aspects of running a project on a diagram that focuses on keeping the
system coherent for the user counterbalances the other forces that
would sacrifice coherence for ease of implementation or delivery.
Building and using a User Environment Design for development is
described in Part 5.

Mock-up and test with customers: Testing is an important part
of any systems development, and it's generally accepted that the soon-

er problems are found, the less it costs to fix them.
Rough paper prototypes of the system design test
the structure and user interface ideas before any-
thing is committed to code. Paper prototypes sup-
port continuous iteration of the new system, keep-

ing it true to the user and giving designers a data-based way of
resolving disagreements. In prototyping sessions, users and designers
redesign the mock-up together to better fit the user's work. The results

Contextual Design 25

of several of these sessions are used to improve the system and drive
the detailed UI design. Paper prototyping is described in Part 6.

Putting into practice: In the last chapter, we look at practical
issues of putting a new design process in place. You'll encounter resis-
tance, you'll have to work with the limitations of the
organization you have, and you'll have to build on
the skills you have in place. Altering Contextual
Design to fit your organization and your specific
design problems means recognizing which parts are
critical and which are less necessary in each case. What works for a
two-person team won't work for a fifteen-person team; what works to
design a strategy for a new market venture won't work for the next
iteration of a 10-year-old system. We'll discuss common project situa-
tions, how to tailor the process to them, and how to ensure you don't
lose the key features of the process along the way.

Each part of the book has a similar structure: the first chapter
focuses on the organizational situation and issues driving that phase of
the design process. If you're looking for an overview of Contextual
Design and the thinking behind it, concentrate on the first chapter of
each part. The second chapter of the part describes what makes this
phase of the design process customer-centered. It discusses how to
make customer considerations central given the needs and constraints
of this phase of design. And the third chapter of each part describes
how to do the work, covering particular procedures and techniques
that guide a team through the process.

This book is intended to capture our experience designing customer-
centered processes to meet a wide variety of team situations and design
problems. As we describe in Part 3, there's a broad commonality of
work practice across any industry, so we expect the solutions we've
developed to be generally useful; there will be a lot here that you can
pick up and apply in your own situation. However, every situation is
unique, and you should expect that you will tailor the things you pick
up to your problem, team, and organization. Treat Contextual Design
as a coherent design process but also as a collection of techniques and
a framework for thinking. Where you have other techniques you've
found to be valuable, slide them into the appropriate place in the
process. This is a starting point. What you do with it is up to you.

Tailor Contextual Design
to your organization

26 Chapter 1 Introduction

A L A N ' S S T O R Y

I'm the project manager for a network management application. We'd done a lot of good engi-
neering work on the application, converting it to C++ and cleaning up the architecture. We also had
pretty good software development processes—we specified new features before building them
instead of coding by the seat of our pants, down to the point of dealing with error conditions. But
when we presented our last version to customers, they liked it but were not excited. I decided we
didm really understand our customers well enough and that we should do something about it.

Our UI designer had some experience with Contextual Design and talked me into trying it for
our next version. I was told it would take 15 days, so I agreed to put four engineers on it, including
myself Then when I talked to the coach who would lead us through the project, I found out it
would actually take four to six months. This was a shock. But I decided it was important, and we
went ahead with three engineers and three documentation people.

We did 16 contextual interviews in all. Even during the initial interviews, I learned more about
the customers' real needs. It wasn't so much that we came up with new features as that my whole
understanding of the real priorities changed: things that I thought were priority 100 I realized we
had to do in this release, and some cool technical features that were priority 1 moved down to 100.
Throughout the project, I changed priorities of different tasks and reassigned people as I understood
better what our customers needed.

We built an affinity and consolidated our models, which crystallized our understanding of cus-
tomer priorities. Then we did the visioning and storyboards based on the vision. This frankly scared
me; I thought if we had data from 50 or 60 people I could rely on it better. Also at this point, some
of the UI designers pulled out. They were bothered by working as a team on a part of the design
they used to do alone and said they didn't see the need for all this customer data. We went forward
with the redesign, but then I began to get uncomfortable; some of the team didnt want to be tied to
reality. They wanted to design from scratch.

I decided to cut and run, I told the team we had two weeks to develop final designs for
changes to be delivered in the next release—that made everyone get very concrete. We cleaned up
our ideas, and the teams architect and I wrote six specifications capturing the new design. I assigned
the specifications to developers to flesh out and code on their own. Issues did come up later during
development, and we would go back to the consolidated models and affinity to resolve them. Often
when engineers were arguing over two alternatives, the models would suggest some third alternative
that they hadn't even thought of.

We finished the release and showed it around the company. People were excited, but the real
test came when we demonstrated it at our worldwide users' group meeting. For each new part of the
system, I explained what we saw customers trying to do, how the new system would help them do
it better, and then showed them the product actually doing it,

Our customers gave us a standing ovation. That s never happened before.
Looking back over the project, what strikes me is that we achieved this with no extra engineer-

ing effort. We didnt take longer to ship this release, or work longer hours than on any other, and we
didnt have more developers. We were just better focused because we knew what was important to
die customer. IYn using more of the process on my current release and am finding that's still true:
the additional insight we are gaining is still worth the effort. J

P A R

Understanding
the Customer

This page intentionally left blank

Gathering Customer
Data

Ask a developer if he designs from customer data, and he will sure-
ly say he does. Sue went to a users' group meeting and talked to

people there; Joe showed a demo at an industry show; Mary makes a
point of meeting with internal customers at least once a month. These
are traditional methods of maintaining customer contact. What is driv-
ing the widespread desire in the industry to go beyond these methods,
to enable designers to learn more about their customers and involve
customers more fully in the design?

"Design" in our sense is the intentional structuring of a system so
that the parts work together coherently to support the work of people.
There is plenty of formal and informal evidence that
getting the design right is a major difficulty in the
industry. Informally, products ship late or not at all
because people cannot agree on what to build; Infor-
mation Technology (IT) groups feel that the depart-
ments they serve can never make up their minds
about what they want. Formally, studies show that most problems in
software systems can be traced back to problems in the requirements,
and the later in development a problem is caught, the more it costs to
fix.1 Studies also show that the more customer contact a project has,
the more likely it is to be successful (Keil and Carmel 1995). The liter-
ature and experience on requirements engineering demonstrate that
gathering good customer data is hard. The exact combination of
approaches to use on a particular project calls for careful consideration

1 This has become folk wisdom in the industry; see, for example, Daley (1977) or
Boehm (1976).

Getting the design right

for the work is the

major challenge

30 Chapter 2 Gathering Customer Data

Marketing asks: what

should we make?

and design. Simply following the organization's usual methods for
gathering data will generally not produce the data a design team needs.
The methods used by commercial and IT organizations are different,
and we will consider them separately to show how they fall short of
providing a complete view of the customer.

M A R K E T I N G D O E S N ' T PROVIDE

D E S I G N D A T A

Developers writing commercial software usually depend on a market-
ing department to provide guidance on what to build. Marketing is a
discipline with a long history and extensive literature—certainly longer
and more extensive than software development. People have worked
out effective ways of understanding a market to sell products to it. Yet,
when marketing comes to a design team to tell them what to build,
there's a mismatch.

"Marketing never tells us any of the things we need to know," say
product designers. But the people in marketing say, "We give them all

kinds of data! They just refuse to use it." In fact,
understanding a market is fundamentally different
from understanding what to design into a system,
and the data traditionally collected for marketing
has limited usefulness for product design. Marketing

needs to understand what people will buy and how people make buy-
ing decisions; designers need to understand what will help people do
their work better while fitting into their lives and matching their cul-
ture. There is only a limited overlap between these questions.

Marketing has developed many different techniques for finding
out what people will buy. Important factors in the answer include
how much money the target market has, what hardware (or mix of
hardware) and other infrastructure they are committed to, what they
think their big problems are, and what technology is currently "hot."
This way of thinking about a market leads to asking certain questions.
Given a story about how hard it is to print a label (such as the exam-
ple in Chapter 1), a marketing expert might ask: Are you in a home
office, small office, or large office? What kind of computer and printer
do you have? Are they from the same manufacturer? What word

Marketing doesn't provide design data 31

processor are you using? How often do you do this task? How much is
it worth to you to have the problem fixed?

The designer's basic question is different: how can I structure a
system to make people's work more efficient? This question leads to
asking about the structure of the work people do:
What are the parts of a letter? How is a label differ
ent from an envelope? Does anyone understand the
difference between "on" and "online"? Can you reach
your printer and your keyboard at the same time? A
system impacts work; designing a system requires understanding work
at this level. From marketings point of view, these questions are irrele-
vant; none of them affect who will buy a product. Marketing wants to
be able to say, "There is a market here for a product addressing these
concerns. Customers in this market are companies of this kind, and
they would be willing to spend this much money." That's the design-
er's starting point. Given that starting point, designers need to dive
into the work as the people in the market perform it. They need to
discover the detailed structure of existing work to see how their prod-
uct can enable a new, better way of working.

Because marketing and design have different goals, techniques
useful to marketing tend not to be useful to designers. Marketing
techniques tend to characterize and scope the market, rather than
describing the structure of its work. As a result, marketing techniques
tend to be quantitative. When you want to scope a market, it may be
useful to ask, "How much money do you expect to spend on equip-
ment next year?" and average the results across all respondents. De-
signers must build on more qualitative data. "What are the parts of a
letter, and how are they used?" The answer to this question is a
description of work practice, not any sort of number. Even if a ques-
tion looks like it has a numeric answer ("How far is your printer from
your keyboard?"), appearances are deceiving. For a designer, the true
answer isn't a number, it's "Too far to keep dashing back and forth
between them."

Marketing techniques generally assume you know
what the questions are. When characterizing a mar-
ket, this assumption may be reasonable—there are a
few dimensions that matter, and they tend to repeat
from problem to problem. Accordingly, marketing
techniques structure the interaction and control the

Designers ask: how should
it be structured?

Traditional marketing
techniques cant collect
design data

32 Chapter 2 Gathering Customer Data

Qualitative and
quantitative techniques
build on each other

resulting data. For example, surveys and structured interviews both start
with a list of questions that explicitly or implicitly drive the interaction
and define what is important. But as soon as design starts, no one
knows what the questions are. No one knows what will turn out to be
important. "Installation is the #1 problem" reports a customer satisfac-
tion survey (a marketing technique). But what is wrong with installa-
tion (a design question)? When do installations happen, and who does
them? What information is available when they do them? Which of the
many alternative fixes is best?

Even the customer doesn't necessarily know what the questions are:

Users of an X-ray machine kept asking for more and more
exact speed controls on their X-ray machines, trying to run
the image at exactly 1IA second per frame. It was not until
someone studied the work they were doing that they realized
the users just needed a timer—they were trying to run the
tape at an exact speed so they could measure elapsed time.
The customers requested a technical fix to the existing system,
but the real issue was in the structure of the work they were
doing.

This is true in general with wish lists and other customer requests;
the customer will focus on a narrow fix, but understanding the con-
text of the work that drove the request will result in more insight and
better solutions. The customer acts as though the question were,
"What simple tweak or addition to the system as it is will overcome
the problem I'm having?" The designer wants to know, "What new
concepts or features would make the system radically more appropri-
ate to the job at hand?" Answering this question requires an open-
ended technique.

None of this is to say that designers don't need to worry about
what people will buy. It's only within the context of a market with

needs to be met and money to spend that design
makes sense. But once marketing techniques have
identified a market and shown that there is money
to be made there, designers must look in depth at
how people in the market work2 to determine what

For simplicity's sake, we'll refer to the activities that customers are engaged in as
"work" everywhere. Of course, a consumer product might support general life
tasks, and a game supports play; these same techniques have been successfully
applied to both environments.

The rocky partnership between IT and its clients 33

to build. Quantitative techniques using predefined questions can iden-
tify the market and show designers where it is interesting to explore.
Understanding the work of the market requires a qualitative technique
that explores the customers' work practice and makes new discoveries
about how people work and what they need. The discoveries may
then lead to new strategies for addressing the market and new market
messages for selling to it. They will confirm whether the identified
market will really have a significant impact on the work. Then, quan-
titative techniques may again be useful to show that the work practice
to be supported is sufficiently widespread to make a good business.
The two disciplines, marketing and design, build on each other with
complementary goals and techniques, to result in a whole-product
definition. (Hansen [1997] reports on the effectiveness of different
mechanisms for gathering customer feedback in a start-up.)

THE ROCKY PARTNERSHIP
B E T W E E N IT AND ITS CLIENTS

The job of an IT department is to support the business practice of the
organization so people can get their work done efficiently. They must
understand the work people do and know how to work with them to
make their procedures more efficient with technology. IT departments
have the luxury of building for a captive customer base. They know
who their customers are and can talk to them directly. Their customers
know the system is being built for them; they have often specifically
requested it. Close working relationships should be easy to create.

In truth, however, the relationship between IT departments and
their customers is often antagonistic. "They can never give us what we
want in a reasonable period of time. Everything
takes two years and even then it's late," say cus-
tomers. But the IT developers respond, "Of course
it's late. They changed the requirements five times,
and then when they saw the system they decided
they wanted a whole new subsystem added." Instead

Having customers on
site doesnt make
requirements clearer

of creating a trusting partnership with the customer departments, IT
is perceived as constantly failing. The customers—the people actually
running the business—end up feeling that they cannot rely on IT to

34 Chapter 2 Gathering Customer Data

get anything done in a reasonable time, and IT believes they have to
cover themselves to prove it wasn't their fault when changing business
needs or desires cause requirements to change.

Customer representatives
only truly represent
themselves

Developers placed with
clients can turn into the
technical handyman

IMPROVING C O M M U N I C A T I O N WITH T H E
B U S I N E S S

A common approach to addressing these problems is to work through
a customer representative—someone in the customer organization

who knows the business and has the job of commu-
nicating requirements to the designers in IT. Some-
times the representative is a "primary customer"
who still devotes some percentage of his or her time
to the real job; sometimes its a manager who used
to do the job but doesn't any longer; sometimes it's a

"customer liaison" who used to do the job but is now working with IT
full-time; and sometimes, as in many government contracts, require-
ments are communicated by an agency that prevents any direct con-
tact with the end customer at all. Even in the best case, the representa-
tive only does personally one of the many jobs in the customer
organization. And many IT systems impact work across several
departments; customer representatives usually only represent one. Any
"customer representative" has a serious challenge in truly representing
all aspects of the customer organizations.

Many IT departments avoid these problems by stationing IT
developers with the customer organization. This certainly succeeds in

making IT more responsive to the customer, but
brings a loss of control. The developers easily become
focused on short-term problems and solutions—they
tend to become the local fix-it man. The structure of
the customer's work and long-term possibilities for
improvement are no more visible to IT developers

than to the customer, and without this perspective they, like the cus-
tomer, focus on the immediate and most visible issues. And they are
stationed in a particular department, so cross-departmental issues are as
invisible to them as to their customers. They are rewarded for produc-
ing quick fixes to pressing problems. The usual result is dozens of small
applications, each solving a single problem, that do not work together
to support the work coherently.

The rocky partnership between IT and its clients 35

In todays world, the systems that are needed are large and com-
plex. They tie together all aspects of a department s work; they support
business processes that cross departments; they integrate a company's
systems with those of its suppliers and customers. To address these
challenges, both IT and their customers need to step back, out of the
day-to-day routine of doing business, to see the implications and possi-
bilities. Design starts with who the designers talk to and where they are
situated. When designers sit with the customer, with no time for reflec-
tion, the result is narrow, extremely focused designs. As process reengi-
neering becomes more important, being able to envision and support
large-scale process changes becomes critical to IT s mission. (Lübars et
al. [1993] surveys the definition and use of requirements in different
organizations for both IT and commercial systems.)

THE ROLE OF INTUITION IN DESIGN

The methods that IT organizations use to interact with their customers
tend to capitalize on unarticulated knowledge or intuition. If the
designers intuition can't be trusted to produce a useful system because
designers aren't the people doing the work, get the customers more
involved in the design. They may not be able to say exactly what they
do or why something is important, but they can say what they do or
don't like about a design. Another way to bring intuition to bear is to
seat developers with the customers so that their intuition gets trained
by proximity. Commercial companies do the same thing when they
hire accountants to develop accounting software, or send engineers to
work with a customer organization for a long time, or run a focus
group to allow potential customers to react to product ideas. They are
making unarticulated knowledge available to the design team.

But can people reveal truths about their own work in such a situa-
tion? The underlying assumption is that people will say what's impor-
tant given the opportunity, but people simply don't
pay that much conscious attention to how they per-
form jobs that they do well. Think about how diffi-
cult driving was when you were first learning. Get-
ting the steering coordinated with the accelerator
and the clutch (if there was one) was awkward and
jerky. With increasing skill came increased smoothness and less atten-
tion to each detail, until at last the whole process became unconscious.

People dont think about
jobs that have become
second nature

36 Chapter 2 Gathering Customer Data

The challenge is to make

customer intuition

external and sharable

Now, to teach someone else to drive, the teacher has to recover every-
thing she worked so hard to forget. And driving is a simple, obvious
task. How are you to know what aspects of everyday work are impor-
tant? (Sommerville et al. [1993] describes the importance of under-
standing unarticulated procedures in the somewhat more important
domain of air traffic control.)

Many of the important aspects of work are invisible, not because
they are hidden, but just because it doesn't occur to anyone to pay
attention to them. Intuition doesn't help make these aspects explicit:

An entire project team hangs out in the hallway outside
their offices every morning and chats over coffee and donuts.
Does anyone on the team know this is a critical project coor-
dination session?

A worker in accounting calls a friend in order processing
to gossip and mentions that a rush order is on its way. Does
his manager know this informal communication is the only
thing keeping the company's rush orders on time?

Intuition has other limitations in a design process. Intuition is
entirely internal—it can't be shared with other team members. It can

only be used as the basis for an opinion. But if my
intuition and your intuition tell us two different
things, then what? Either we have to argue, with no
basis for making a rational decision, or we have to
appoint someone else tiebreaker. Intuition comes
from personal experience. It's not clear how to go

from experience with one customer, or a small set of customers, and
generalize it to a department or market. All these problems suggest
that a design process needs to externalize the unarticulated knowledge
behind intuition. Given an external representation of customer work,
we can validate it, share it, and use it to justify design decisions.

CONTEXTUAL INQUIRY REVEALS

HIDDEN WORK STRUCTURE

A commitment to making customer knowledge explicit and external
isn't useful without a way to get at all the detail of work experience for
all the different types of customers. But as we noted above, many

Contextual Inquiry reveals hidden work structure 37

common ways of working with customers remove them from their
work. Consider trying to teach someone to drive not in a car, but in a
conference room. With no pedals, turn signal, or steering wheel,
explain what's involved in making a turn. Try to describe what the
road might look like, when to slow down, when to put on the turn
signal, when to turn the wheel and how fast. It would be tempting to
borrow a pie plate for a wheel and blocks for pedals. But even then, it
would be so much easier to take your student out on the road and
demonstrate. Yet this is the situation that customers are in—trying to
explain their work, in a conference room, to designers who don't do
their work. This is the situation of anyone filling out a survey or par-
ticipating in a focus group. To reveal all aspects of work practice,
when so much of it cannot be articulated even by those who do it,
you have to see the work. (Goguen and Linde [1993] evaluates differ-
ent techniques for the ability to reveal unarticulated needs.)

We designed our field interviewing method, Contextual Inquiry,
to address these issues: how to get data about the structure of work
practice, rather than a market characterization; how to make unarticu-
lated knowledge about work explicit, so designers who do not do the
work can understand it; and how to get at the low-level details of
work that have become habitual and invisible. We needed a technique
that would allow marketing, engineering, analysts, and customer rep-
resentatives to work together and share insights. These problems sug-
gested an open-ended, qualitative approach that brings us in contact
with the customer s real work. Contextual Inquiry is such a technique.
(Goguen [1996] discusses how social techniques such as Contextual
Inquiry fit into the requirements gathering process.)

Contextual techniques are designed to gather data from custom-
ers in the field, where people are working or living. Contextual
Inquiry is a field data-gathering technique that stud-
ies a few carefully selected individuals in depth to
arrive at a fuller understanding of the work practice
across all customers. Through inquiry and inter-
pretation, it reveals commonalities across a systems
customer base.

Contextual Inquiry is based on a set of principles that allow it to
be molded to each situation that a project encounters: context go to
the customers' workplace and watch them do their own work; part-
nership, talk to them about their work and engage them in uncovering

Observe the work while it
happens to gather detailed
design data

38 Chapter 2 Gathering Customer Data

Interpret the data as a
team to create a shared
perspective

unarticulated aspects of work; interpretationy develop a shared under-
standing with the customer about the aspects of work that matter; and
focus, direct the inquiry from a clear understanding of your own pur-
pose. These principles guide the creation of a data-gathering tech-
nique to collect the best data possible given the constraints of the situ-
ation. We've used these principles to apply Contextual Inquiry in
many different ways. However, most of the time, the simplest form is
sufficient: the contextual interview.

A typical contextual interview lasts two to three hours. A member
of the design team meets the customer at his or her place of work and,
after a brief introduction, watches the customer do work of the sort
the team is interested in. From time to time, the interviewer inter-
rupts, and the two discuss some aspect of the work just performed.
Sometimes the discussion stimulates the customer to pull out a paper,
form, or note, and they spend time analyzing the artifact in detail.
Using these artifacts to support the conversation, the interviewer finds
out about events that took place over a longer period of time.

Afterwards the whole design team works with the interviewer to
interpret the results of the interview for the design problem. Any one

of the design team, representing any business func-
tion (marketing, analysts, development, usability)
may have run the interview; during the interpreta-
tion everyone shares their insight and perspective.
Together, they develop work models to characterize
the structure of the work of this customer. (Work

models are described in Part 2 and the interpretation session itself in
Chapter 7.)

Between 10 and 20 interviews like this, with people who perform
widely different roles and work in very different ways, are usually suf-
ficient to define an area of work. People only come up with a few dif-
ferent ways of approaching a task. The work models reveal this struc-
ture, showing the underlying commonalities across a wide variety of
apparently dissimilar users. In every case we have studied, we discover
that the underlying structure of work practice is consistent enough
that by the time 10 to 20 interviews have been conducted, we are dis-
covering little that is new.

By grounding the design process in detailed, trustworthy cus-
tomer data, Contextual Inquiry addresses the major problems of both
IT and commercial organizations. Commercial organizations find that

Contextual Inquiry reveals hidden work structure 39

Contextual Inquiry provides a way for the design team to investigate
specific work practice, once marketing has defined a potential product
area. It gives marketing and engineering a common
language for talking to the customer and sharing
their knowledge. IT organizations find that Contex-
tual Inquiry helps them build a new relationship
with the customer. It brings them into contact with
the customer s day-to-day work and allows them to
understand it in a way neither they nor their customer could before.
The conversation between customer and interviewer about the cus-
tomer's work (rather than about the system design) creates a shared
understanding and commitment between the groups.

In the remainder of this part, we discuss the structure of the inter-
view itself We describe each principle in detail and show how the
principles drive the form of the interview. We then discuss the practi-
cal questions of interviewing in the context of a real project: who to
talk to, how to set up the interviews, and how different types of proj-
ects need different applications of the techniques. In Part 2, we
describe the other side of the interpretation session—work models
and how to construct them.

Let data become the basis
for organizational
cooperation

This page intentionally left blank

Principles of
Contextual Inquiry

The core premise of Contextual Inquiry is very simple: go where
the customer works, observe the customer as he or she works,

and talk to the customer about the work. Do that, and you cant help
but gain a better understanding of your customer.

That is the core of the technique, but we find people are generally
happy to have a little more guidance. What do interviewers do at the
customer's site? How do they behave? What kind of relationship
allows customers to teach designers the depth of knowledge about
their work necessary to design well?

In Contextual Design, we always try to build on natural human
ways of interacting. It is easier to act, not out of a long list of rules,
but out of a simple, familiar model of relationship.
A list of rules says, "Do all these things"—you have
to concentrate so much on following the rules you
can't relate to the customer. It's too much to remem-
ber. A relationship model says, "Be like this"—stay in
the appropriate relationship, and you will naturally
act appropriately (Goffman 1959).

Many different models of relationship are available to us. A for-
mal model might be scientist/subject: I am going to study you, so be
helpful and answer my questions; it doesn't really matter whether you
understand why I'm asking. A less formal model
might be parent/child: I'll tell you what to do, and
you'll do it because you want my approval (or else
you'll rebel to show your independence). Each of
these models brings with it a different set of atti-
tudes and behaviors. Everyone knows what it is like

Design processes work

when they build on

natural human behavior

Use existing relationship

models to interact with

the customer

42 Chapter 3 Principles of Contextual Inquiry

When you re watching
the work happen, learning
is easy

when someone treats us like a child, and the resentment it generates.
Ironically, the natural reaction is to behave like a child and fight back.
Relationship models have two sides, and playing one side tends to pull
the other person into playing the other side. Find a relationship model
that is useful for gathering data, and as long as you play your role, you
will pull the customer into playing theirs.

THE MASTER/APPRENTICE MODEL

The relationship between master craftsman and apprentice is an effec-
tive model for collecting data. Just as an apprentice learns a skill from
a master, a design team wants to learn about its customers' work from
its customers. Though the model is no longer common, it is still suffi-
ciently familiar that people know how to act out of it. When they do,
it creates the right behaviors on both sides of the relationship for
learning about the customers' work. We find that people with no spe-
cial background in ethnography learn how to conduct effective inter-
views much more quickly by acting like an apprentice than by memo-
rizing a list of effective interviewing techniques. Building on this
relationship model creates a strong basis for learning about work.

Craftsmen, like customers, are not natural teachers, and teaching
is not their primary job. But they do not need to be; the master crafts-
man teaches while doing. A master does not teach by designing a
course for apprentices to take. Nor does a master teach by going into a
conference room and discussing his skill in the abstract. A master
teaches by doing the work and talking about it while working. This
makes imparting knowledge simple.

Teaching in the context of doing the work obviates any need for
the craftsman to think in advance about the structure of the work he

does. As he works, the structure implicit in the work
becomes apparent because both master and appren-
tice are paying attention to it. It is easy for the master
to pause and make an observation or for the appren-
tice to ask a question about something the master
did. Observation interspersed with discussion re-

quires little extra effort on the part of either master or apprentice.
Similarly, in Contextual Inquiry, team members go to the cus-

tomers' workplace and observe while they are immersed in doing their

The master/apprentice model

Seeing the work reveals

what matters

work. Like the driver of a car, customers don't think about how they
are working. But they can talk about their work as it unfolds. They do
not have to develop a way to present it or figure out what their
motives are. All they have to do is explain what they are doing, as does
this user of a desktop publishing product:

I'm entering edits from my marked-up copy here . . . I'm
working in 200% magnification so I can really see how things
line up. It doesn't matter that I cant see all the text in this
magnification because I'm not checking for continuity or nat-
ural flow of words; I'll do that in another pass later. . . .

Even if the master were a good teacher, apprenticeship in the con-
text of ongoing work is the most effective way to learn. People aren't
aware of everything they do. Each step of doing a
task reminds them of the next step; each action taken
reminds them of the last time they had to take such
an action and what happened then. Some actions are
the result of years of experience and have subtle
motivations; other actions are habit, and there is no longer a good rea-
son for them. The best time to unravel the vital from the irrelevant and
explain the difference is while in the middle of doing the work.

This holds true for customers as well. They are not aware of every-
thing they do or why they do it; they become aware in the doing.1

Once we observed someone sorting his paper mail. He was
able to tell us exactly why he saved, opened, or threw out each
piece because he was in the process of making that decision.

Another time, a research scientist came to the end of a
painstaking series of mechanical calculations, turned to us,
and said, "I guess you're surprised that I'm doing this." He was
surprised at how inefficient he was, once he stopped to think
about it.

But it is not natural to stop your work to think about it; the appren-
tice relationship provides the opportunity to do so.

Talking about work while doing it allows a mas-
ter craftsman to reveal all the details of a craft. As he
works, he can describe exactly what he is doing and

Seeing the work reveals
details

1 Polanyi (1958) discusses what tacit knowledge people have available for discussion
at different times.

44 Chapter 3 Principles of Contextual Inquiry

Seeing the work reveals

structure

why. When either master or apprentice observes a pattern or principle
in action, he can point it out immediately.

Customers who describe what they are doing while doing it, or
talk about a prior event while in their work, have the same kind of
detail available to them. Every action they take and every object
around them helps them talk about the details of their work.

One customer said he would not use a manual's index to
find the solution to a problem: "It's never in the index." He
could not say what led him to this conclusion, what he had
looked up and failed to find. All his bad experiences were
rolled up into one simple abstraction: it's not there. But when
we watched him looking things up, we could see that he was
using terms from his work domain, but the index listed parts
of the system. We learned what the problem was and what we
could do to fix it.

People sometimes don't even remember how to do their jobs
themselves; instead, they depend on the environment and things in it
to tell them what to do:

A customer was unable to describe how she made her
monthly report. When asked to create it, she pulled out her
last report and started filling in the parts. The old report was
her reminder of how to produce the next one.

Talking about work while doing it protects the master craftsman
and the customer from the human propensity to talk in generaliza-
tions that omit the detail designers need. When the work's right there,
the details, even details people do not normally pay attention to, are
available for study and inquiry.

The apprentice learns the strategies and techniques of a craft by
observing multiple instances of a task and forming his own understand-

ing of how to do it himself. This understanding
incorporates the variations needed to do the task well
under a variety of circumstances. The master crafts-
man can communicate techniques and strategies
without articulating them. By watching instance after

instance, the apprentice builds up a big picture of how to do the work.
In the same way, interviewers observing multiple events and mul-

tiple customers learn to see the common strategies underlying the
work. Once they understand the basic strategies, they can start to

The master/apprentice model

Every current activity
recalls past instances

imagine a system that would support those strategies. For example, a
basic pattern in coding is work on the code, test it, and see the results.
Identifying bugs to fix leads back to working on the code. But this
pattern holds true not only for code, but for creating analysis and
design models and automated tests as well. We uncovered this pattern
by observing multiple people working on multiple systems of varying
complexity. We could then structure the CASE system we were
designing to facilitate movement through this cycle. (Part 3 discusses
making common patterns and strategies explicit.)

Every event serves as the starting point for discussing similar events
in the past. In this way apprentices learn from experience gained by a
master before their apprenticeship started. A particu-
lar occurrence or task reminds the master of other
interesting times this event or task happened. If the
event is reasonably close in time, the story is concrete
and detailed. It is the retelling of a particular event,
told while the master is immersed in doing the same activity with all
the triggers and reminders doing that activity provides.2

A design team typically has less time to spend with its customers
than the years needed for an apprenticeship. But in the same way that
an apprentice can learn from the masters experience, interviewers can
learn about events that occurred in the past. Events that occur while
the interviewer is present remind customers to talk about events that
happened previously. The artifacts of work—papers, forms, notes,
clipboards, and so forth—trigger conversations about how they were
used, how they were created, and how their structure supported their
use in a particular instance.

A customer describing how she learned a feature told us,
"I looked it up in the documentation." But when we asked
her to look it up again, she was able to show us: "I looked the
function up in the index and scanned the section. I saw this
icon in the margin that I recognized from the screen, so I read
just this paragraph next to it. It told me all I needed to know."
The documentation provided the context she needed to
recover a detailed story, and the detail revealed aspects that
had been overlooked—that the icon was her visual cue to the
relevant part of the page.

2 Orr (1986) describes such storytelling to transmit knowledge among modern-day
system managers for similar reasons.

46 Chapter 3 Principles of Contextual Inquiry

Contextual Inquiry is
apprenticeship compressed
in time

Contextual Inquiry seeks to provide rich detail about customers
by taking team members into the field. Once there, apprenticeship

suggests an attitude of inquiry and learning. It rec-
ognizes that the customer is the expert in their work
and the interviewer is not. An interviewer taking on
the role of apprentice automatically adopts the
humility, inquisitiveness, and attention to detail
needed to collect good data. The apprentice role dis-

courages the interviewer from asking questions in the abstract and
focuses them on ongoing work. And customers can shape the inter-
viewer's understanding of how to support their work from the begin-
ning, without having to prepare a formal description of how they
work or what they need.

Contextual Inquiry tailors
apprenticeship to the
needs of design teams

THE FOUR PRINCIPLES OF

CONTEXTUAL INQUIRY

Apprenticeship is a good starting point, but it is only a starting point.
Unlike apprentices, interviewers are not learning about work in order

to do it; they are learning about it in order to sup-
port it with technology. Interviewers cannot afford
to spend the time an apprentice would take to learn
the work. Unlike an apprentice, members of the
design team contribute their own special knowledge
about technology and what it can do. Apprentices

learn a single job, but different projects may require the team to study
a widely varying work practice—from the surgeon in the operating
theater, to the manager in a high-level meeting, to the secretary at a
desk, to the family in front of the video game. Designers meet the
needs of a whole market or department, so they must learn from
many people—individuals doing the same kind of work and individu-
als doing very different tasks and taking on different roles in order to
get the work done.

The basic apprenticeship model needs modifications to handle a
design teams needs and situation. Four principles guide the adoption
and adaptation of the technique: context, partnership, interpretation,
and focus. Each principle defines an aspect of the interaction. Together,

The four principles of Contextual Inquiry 47

they allow the basic apprenticeship model to be molded to the partic-
ular needs of a design problem. We will describe each principle and
how to use it in turn.

C O N T E X T

The principle of context tells us to go to the customer s workplace and
see the work as it unfolds (Whiteside and Wixon 1988). This is the
first and most basic requirement of Contextual

Go where the work is
to get the best data

Inquiry. Apprenticeship is a fine example of doing
this; the apprentice is right there to see the work. All
the richness of real life is there, able to jog the cus-
tomer's memory and available for study and inquiry.
The customer made a phone call in the middle of doing a task. Is this
relevant to the work? Was she calling on an informal network of
experts to get help in the task? Someone stops by to get a signature on
a form. What is the customer's role in this approval process? Do they
talk about it before she signs? What are the issues?

Context tells us to get as close as possible to the ideal situation of
being physically present. Staying in context enables us to gather ongo-
ing experience rather than summary experiencey and concrete data rather
than abstract data. We'll describe each of these distinctions in turn.

S U M M A R Y V S . O N G O I N G E X P E R I E N C E . We are taught
from an early age to summarize. If someone asks a friend about a
movie she saw last week, she does not recount the entire plot. She
gives overall impressions, one or two highlights, and the thing that
most impressed or disgusted her. (Never ask a seven-year-old that
question—they haven't yet learned to summarize and will tell you the
entire plot of the movie in excruciating detail.) Ask people to tell you
about their experience with a new system, and they will behave just
the same way. They will give their overall impressions and mention
one or two things that were especially good or bad. They will have a
very hard time saying exactly why the good things were important, or
why the bad things got in the way. That would require that they be
able to talk about the details of their work, which is very hard to do.

We once asked a secretary how she started her day. Her
answer was, "I guess I just come in and check my messages
and get started." She wasn't able to go beyond this brief

48 Chapter 3 Principles of Contextual Inquiry

summary overview. It was the first thing in the morning and
she had just arrived at the office, so we asked her to go ahead
and do as she would any other morning. She unhesitatingly
started her morning routine, telling us about it as she went:
"First I hang up my coat, then I start my computer. Actually,
even before that I'll see if my boss has left something on my
chair. If he has, that's first priority. While the computers com-
ing up, I check the answering machine for urgent messages.
There aren't any Then I look to see if there's a fax that has to
be handled right away Nope, none today. If there were, I'd
take it right in and put it on the desk of whoever was respon-
sible. Then I go in the back room and start coffee. Now I'll
check the counters on the copier and postage meter. I'm only
doing that because today's the first of the month. . . ."

This person's morning routine has a definite structure: first she
checks all her communication mechanisms to see if there is an imme-
diate action that needs to be taken, then she starts the regular mainte-
nance tasks of the office. But this structure is invisible to her. It would
not even occur to most people as a topic of conversation.

The job of the interviewer is to recognize work
structure. Discovery of work structure arises out of

Avoid summary data t h i s j e v e i of detail about mundane work actions.
by watching the work Summary experience glosses over and hides this de-
unfold tail. Being present while the work is ongoing makes

I the detail available.

A B S T R A C T V S . C O N C R E T E D A T A . Humans love to ab-
stract. It's much easier to lump a dozen similar events together than to
get all the details of one specific instance really right. Because an
abstraction groups similar events, it glosses over all the detail that
makes an event unique. And since a system is built for many users, it
already needs to abstract across all their experience. If designers start
from abstractions, not real experience, and then abstract again to go
across all customers, there is little chance the system will actually be
useful to real people. Even in the workplace, customers easily slide
into talking about their work in the abstract. But there are signals that
indicate the customer needs to be brought back to real life.

If the customer is leaning back and looking at the ceiling, he is
almost always talking in the abstract. This is the position of someone

The four principles of Contextual Inquiry 49

who will not allow the reality all around him from disrupting the con-
ception he is building in his brain. Someone talking about real experi-
ence leans forward, either working or pointing at some representation
of what he is talking about. Words indicating the customer is general-
izing are another signal. If the customer says, "generally" "we usually"
"in our company," he is presenting an abstraction. Any statement in
the present tense is usually an abstraction. "In our group we do . . ."
introduces an abstraction; "that time we did . . . " introduces real expe-
rience.

The best cure is to pull the customer back to real experience con-
stantly. Every time you do this, you reinforce that concrete data mat-
ters, and you make it easier to get concrete data next

Span time by replaying

past events in detail

time. If the customer says, "We usually get reports
by email," ask, "Do you have one? May I see it?"
Use the real artifacts to ground the customer in spe-
cific instances. If the customer says, "I usually start
the day by reading mail," ask, "What are you going
to do this morning? Can you start?" Return the customer to the work
in front of him whenever possible.

Sometimes the work that you are interested in happened in the
past and you want to find out about it, so you need to elicit a retrospec-
tive account. Retelling a past event is hard because so
much of the context has been lost. People are prone
to giving a summary of a past event that omits nec-
essary detail. Most people will start telling a story in
the middle, skipping over what went before. They
will skip whole steps as they tell the story The interviewer's job is to
listen for what the customer is leaving out and to ask questions that
fill in the holes. Here is an example of walking a customer through a
retrospective account. The customer is talking about how they dealt
with a report. We've interpolated the dialog with the missing steps
that the interviewer is hearing in the data.

Customer: When I got this problem report I gave it to Word
Processing to enter online—

(Why did she decide to give it to Word
Processing? Did she do anything first?)

Interviewer: So you just handed it on automatically as soon as
you got it?

Avoid abstractions by
returning to real artifacts
and events

Chapter 3 Principles of Contextual Inquiry

C: No, it was high priority, so I read it and decided to send a
copy to the Claims department.

(How did she decide it was high priority? Is it
her decision?)

I: How did you know it was high priority?

C: It has this green sticker on it.

(Someone else made the decision before the
report ever got here. Who and when?)

I: Who put on the green sticker?

C: Thaü put on by the reporting agency. They make the
decision about whether its high priority and mark the report.

(We can better pursue how the reporting
agency makes the decision with them; we'll
only get secondhand information from this
user. Instead of trying to go further backward,
look for the next missing step forward:
doesn't Claims get a more personal
communication than just the report?)

I: Did you just send it on to Claims, or did you write them a
note about why they needed to see it?

C: Oh, I always call Claims whenever I send them one of these
reports.

At each step, the interviewer listened for steps that probably hap-
pened but the customer skipped and then backed the customer up to
find out. In this process, the customer walked through the steps in her
mind, using any available artifacts to stimulate memory, and recalled
more about the actual work than she would if allowed to simply tell
the story in order. Using retrospective accounts, the interviewer can
recover past events and can also learn more about events in progress.
If the end of a story hasn't yet happened, the most reliable way to
learn about that kind of situation is to go back to a previous occur-
rence that did complete and walk through it. Trying to go forward
and find out what will happen next forces the customer to make
something up; going to another past instance allows the customer to
stay concrete.

The four principles of Contextual Inquiry 51

Keep the customer

concrete by exploring

ongoing work

The key to getting good data is to go where the work is happen-
ing and observe it while it happens. Observing ongoing work keeps
the customer concrete and keeps them from sum-
marizing. Keeping to the apprenticeship model
helps with this; the apprentice wants to see and as-
sist with real work. If the customer starts telling sto-
ries, the interviewer can (exerting a little more con-
trol than an actual apprentice would) either redirect
him to ongoing work or delve into the story, using a retrospective
account to get all the detail possible.

P A R T N E R S H I P

The goal of partnership is to make you and the customer collaborators
in understanding his work. The only person who really knows every-
thing about his work is the one doing it. The tradi-
tional interviewing relationship model tilts power too
much toward the interviewer. The interviewer con-
trols what is asked, what is discussed, and how long is
spent on a topic. This won't get you design data—
you don't know what's important to pay attention to, and you don't
know what will turn out to matter. The apprenticeship model tilts
power, if anything, too much toward the master-customer. It suggests
that the customer is in full control, determining what to do and talk
about throughout the interview. Traditional apprenticeship would
reduce the interviewer to asking a few questions for clarification, at best.

This is too limiting for an interviewer understanding work prac-
tice. An interviewer's motive in observing work is not that of the
apprentice. Apprentices want to know how to do the work; inter-
viewers want data to feed invention of a system that supports the
work. Apprentices are assumed to bring no useful skills to the rela-
tionship. Any skills they happen to have they subordinate to learning
the way the master goes about working. Designers may not be
experts in doing the work, but they must develop expertise in seeing
work structure, in seeing patterns and distinctions in the way people
organize work. An interviewer has to create something that looks
more like a partnership than like an ordinary apprenticeship. This
allows them to engage the customer in a conversation about the
work, making the customer aware of aspects of the work that were

Help customers articulate
their work experience

52 Chapter 3 Principles of Contextual Inquiry

formerly invisible and bringing the customer into a partnership of
inquiry into the work practice.

John Kelkmnan
Attornèycrtraw

In one interview with a user of page layout software, the
user was positioning text on the page, entering the text and
moving it around. Then he created a box around a line of text,
moved it down until the top of the box butted the bottom of
the line of text, and moved another line of text up until it
butted the bottom of the box. Then he deleted the box.

Interviewer: Could I see that again?

Customer: What?

I: What you just did with the box.

C: Ohy Im just using it to position this text here. The box
doesnt matter

I: But why are you using a box?

C: See, I want the white space to be exactly the same height as
a line of text So I draw the box to get the height (He
repeats the actions to illustrate, going more slowly.) Then
I drag it down, and it shows where the next line of text
should go.

I: Why do you want to get the spacing exact?

C: Its to make the appearance of the page more even. You want
all the lines to have some regular relationship to the other
things on the page. Its always hard to know if it really makes
any difference. You just hope the overall appearance will be
cleaner if you get things like this right.

I: Its like everything you put on the page defines a whole web
of appropriate places for the other things to go.

The four principles of Contextual Inquiry 53

C: Thaù right. Everything affects everything else. You cant
reposition just one thing

This is a common pattern of interaction during an interview.
While work is progressing, the customer is engrossed in doing it, and
the interviewer is busy watching the detail as it un-

Alternate between
watching and probing

folds, looking for pattern and structure, and think-
ing about the reasons behind the customer's actions.
At some point the interviewer sees something that
doesn't fit, or notices the structure underlying an
aspect of the work, and interrupts to talk about it. This causes a break
in the work, and both customer and interviewer withdraw from doing
the work to discuss the structure that the interviewer found. It is as
though they stepped into a separate conceptual room. The customer,
interrupted in the moment of taking an action, can say what he is
doing and why. The interviewer, looking at work from the outside,
can point out aspects the customer might take for granted. By paying
attention to the details and structure of work, the interviewer teaches
the customer to attend to them also. When the conversation about
structure is over, the customer returns to ongoing work, and the inter-
viewer returns to watching. This withdrawal and return is a basic pat-
tern of Contextual Inquiry: periods of watching work unfold, inter-
spersed with discussions of how work is structured.

Over the course of an interview, customers become sensitized to
their own work and how it could be improved. Questions about work
structure reveal that structure to them so they can
start thinking about it themselves. "It's like every-
thing you put on the page defines a whole web of ap-
propriate places for the other things to go." This
comment suggests a way of thinking about the work.
It makes a previously implicit strategy explicit and
invites a conversation about that strategy. Soon customers start inter-
rupting themselves to reveal aspects of work that might otherwise have
been missed. Over the course of the interview, a true partnership devel-
ops, in which both customer and interviewer are watching work struc-
ture, and in which both are thinking about design possibilities. (See
Chin et al. [1997] on making customers participants in analyzing their
own work.)

Teach the customer how

to see work by probing

work structure

54 Chapter 3 Principles of Contextual Inquiry

Members of a design team also have special knowledge about
how to use technology They notice problems that they can solve and
allow them to distract them from the work. They naturally figure out
a solution to any problem or apparent problem that presents itself.
But this is a distraction from the interview because, rather than listen-
ing to whatever the customer is saying, the interviewer is off thinking
about the great thing she could make. She can't pay attention to the
work while designing something in her mind.

It's not useful to tell designers not to design in the moment—they
will anyway. One of the principles of Contextual Design is to work

with people's propensities wherever possible. So

Find the work issues

behind design ideas

Let the customer shape

your understanding of

the work

rather than forbid designing in the moment, we
manage it by allowing the interviewer to introduce
her idea immediately. The customer is in the middle
of doing the work that the idea is intended to sup-

port. There is no better time to get feedback on whether the idea
works. If the idea works, the interviewer understands the work prac-
tice and has a potential solution. If the idea fails, the interviewer did
not really understand what mattered in the work. By sharing the idea,
the interviewer improves her understanding of the work and checks
out her design idea at the same time. In addition, the idea suggests to
the customer what technology could do. Customers start to see how
technology might be applied to their problem.

Articulating work structure and correcting design ideas during the
interview gives the customer the power to shape the way designers

think about the work. Any iterative technique (such
as rapid prototyping or Participatory Design) enables
customers to shape a proposed design. But iterating
an existing design can only make small modifications
to its structure. That initial structure—the first pro-
totype—was driven by whatever way of thinking

about the work that the designer had when she started. A process is
truly customer-centered when customers can change designers' initial
understanding of the work. Sharing interviewers' initial, unformed
ideas with the customer and articulating work practice together allows
customers to alter the team's initial thinking, opening the possibility of
radical changes in system purpose and structure.

The four principles of Contextual Inquiry 55

A V O I D I N G O T H E R R E L A T I O N S H I P M O D E L S . The dan-
ger in all of this is that customer or interviewer will fall back into
more familiar models of relationship. There are many other models
available, each with its own set of problems. If you fall into one of
these models during an interview, you will pull the customer into the
other side of the relationship, prompting behavior that gets in the way
of gathering data. If you are aware of what these other relationships
are like, you can notice when you fall into them and take actions to
shift back into the right relationship. Here are some common pitfalls:

Interviewer/interviewee: Interviewer and customer start to act as
though there were a questionnaire to be filled out. You ask a question,
which the customer answers and then falls silent.
You, anxious that the interview go well, ask another
question, which the customer answers and then falls
silent again. The questions are not related to ongoing
work because ongoing work has ceased. The best
solution for this is to suggest returning to ongoing work, which effec-
tively prevents this question/answer interaction.

Expert/novice: As a representative of the design team, you go in
with the aura of the expert. You are the one designing the system,
with all the technical knowledge. You have to work
to get the customer to treat you as an apprentice.
The temptation of taking the expert role back is
always present, especially when the customer is try-
ing to use a system that you developed. Set the cus-
tomer's expectations correctly at the beginning by explaining that
you are there to hear about and see their work because only they
know their own work practice. You aren't there to help them with
problems or answer questions. Then, should the customer ask for
help (or should you forget and volunteer help), step out of the
expert role explicitly: "I'll never understand the problems with our
system if I spend the whole time helping you. Why don't you go
ahead and do what you would do if I weren't here, and at the end I'll
answer any questions that remain." The only exception to this rule is
if the customer is so stuck that he will not be able to do any more of
the work you came to see. In that case, give enough information to
help him find his way out of the problem. Then you'll have to say all

You arent there to get a

list of questions answered

You arent there to answer

questions either

56 Chapter 3 Principles of Contextual Inquiry

Its a goal to he nosy

Partnership creates a sense
of a shared quest

Determine what customer
words and actions mean
together

over again that you came to see how he does things and he shouldn't
depend on you for answers.

Guest/host: Because it is the customer's workplace and the cus-
tomer is a stranger, it is easy to act like a guest. A guest is polite and

not too nosy. A host is considerate and tries to make
the guest comfortable by seeing to his needs. Unfor-
tunately, none of this has much to do with doing
real work. If you find yourself feeling like a guest,

move quickly past the formal relationship to the role of partner in
inquiry. This is where sensitivity to culture matters. If the customer
won't be comfortable until you've had a cup of coffee, then have it and
move into doing work. The relationship should feel like the kind of
intimacy people strike up on airplanes, when they tell things that they
would not ordinarily share with a stranger. Here, intimacy doesn't
come from personal talk; it comes from a shared focus on the work.
Move closer. Ask questions. Be nosy. Ask to see anything the customer
touches, and get them to tell you about it. You will know you created
the relationship you want when the customer says to you, "Come over
here—you want to see this." The more you get them to tell you about
themselves, the more you will move out of the formal role.

Partnership transforms the apprenticeship relationship into a mutu-
al relationship of shared inquiry and discovery of the customer's work. It

retains the close working relationship from appren-
ticeship while equalizing the power imbalance. This
results in an intimate relationship that allows for
inquisitiveness about the details of the work. The
relationship is maintained by honesty and openness

on the part of the interviewer, who reveals insights and ideas as they
occur, and guards against allowing inappropriate relationship models
that take the conversation off topic and prevent getting good data.

I N T E R P R E T A T I O N

It is not enough only to observe and bring back observations. Interpre-
tation is the assignment of meaning to the observa-
tion—what it implies about work structure and
about possible supporting systems. The language our
field uses to describe gathering data for design—data
gatheringy field research, requirements elicitation—

The four principles of Contextual Inquiry 57

suggests that what matters is the facts about the work. Good products,
by implication, are based on facts. Interpretation says that good facts
are only the starting point. Designs are built on the interpretation of
facts, on what the designers claim the facts mean. Here's an illustration:

In working with one user of an accounting package, we
learned that she kept a sheet of accounts and account num-
bers next to her screen. Here are some interpretations of what
this fact might mean and what it might imply for our design:

1. Perhaps account numbers are necessary but hard to
remember, and all we need to do is make the cross-
reference easier. We could put the cross-reference between
numbers and names online.

2 . Perhaps numbers are unnecessary, a holdover from paper
accounting systems, and all that is needed is a way to refer
to an account uniquely. We could get rid of account
numbers altogether and identify them only by name.

3 . Perhaps compatibility with paper systems is necessary, but
referring to accounts by name is more convenient. We
could keep the numbers but allow names to be used
anywhere numbers are used.

Which of these designs is best? It depends on which interpretation
is correct; the fact alone does not allow us to choose. The designer
must choose which interpretation to lay on the fact. It's the interpreta-
tion that drives the design decision.

Interpretation is the chain of reasoning that turns a fact into an
action relevant to the designers intent. From the fact, the observable
event, the designer makes a hypothesis, an initial in-
terpretation about what the fact means or the intent
behind the fact. This hypothesis has an implication
for the design, which can be realized as a particular
design idea for the system. For example, the second
interpretation above starts with the fact (the chart of
accounts is kept next to the screen) and makes the hypothesis that this
is just a holdover from paper accounting systems. This interpretation,
if true, has implications for the system: it doesn't matter whether the
system provides numbers, but it must provide some way to refer to an
account unambiguously. This implication can be acted on by requiring

Design ideas are the end
product of a chain of
reasoning

58 Chapter 3 Principles of Contextual Inquiry

Design is built upon
interpretation of facts—
so the interpretation had
better be right

Sharing interpretations
with customers wont bias
the data

the system to identify accounts through unambiguous names only.
This entire chain of reasoning happens implicitly any time anyone sug-
gests a design idea. Usually it happens so fast, only the final idea is
made explicit. But the whole chain must be valid for the design idea to
work.

If the data that matters is the interpretation, we must have a way
to ensure it is correct, and we can only do that by sharing it with the

customer. We fail in the entire purpose of working
with customers if we do not share and validate our
interpretations of their work—the most important
data we bring back would not be validated. Sharing
interpretations ensures that the work is understood
correctly. Sharing design ideas walks the chain
backwards; if the idea doesn't fit, some link in the

chain was wrong. When it s the customer coming to you with design
ideas in the form of wish lists, treat them the same way: walk the
chain backwards to understand the work context driving the wish.
Understanding the underlying work practice yields much more flexi-
bility in how to respond—many design ideas can spring from a single
origin. Understanding and fixing the underlying problem in the work
practice can address many design ideas with a single solution. The
partnership we have built up with the customer provides a natural
context for sharing observations of structure and interpretations of
their meaning.

Can you really check an interpretation just by sharing it with the
customer, or will that bias the data? Will customers be prone to agree

with whatever you say? In fact, it is quite hard to get
people in the middle of doing work to agree with a
wrong interpretation. Its not at all hypothetical for
them because they are in the midst of the work. The
statement that doesn't fit is like an itch, and they
poke and fidget with it until they've rephrased it so

it represents their thought well:

"It's like a traveling office," you say, looking at how a
salesman has set up his car. "Well—like a traveling desk," he
responds.

The difference between the two is small but real, and people will be
uncomfortable until they get a phrasing that fits exactly.

The four principles of Contextual Inquiry 59

Furthermore, remember that the data that matters is the interpre-
tation of the facts, not the facts themselves. You can't form an inter-
pretation without getting involved with the events, without trying to
make sense of them for you. Where an event contradicts your assump-
tions, you have to inquire and probe, or you'll never be able to replace
your current, flawed understanding with one that works. This probing
is driven by your expectations and prejudices, yet it is the only way
your prejudices can be overturned.

Finally, since customers are not generally experts
in seeing the structure of their own work, the inter-
pretation you suggest shows them what to pay atten-
tion to. Open-ended questions give the customer
less guidance in thinking about their work than an
interpretation and result in less insight.

We might have asked a customer who was starting her
workday, "Do you have a strategy for starting the day?" Even
though the customer just went through the morning routine,
she is not used to thinking about strategy driving ordinary
work events. The most likely response would be "No, not par-
ticularly"—or a blank stare. But if asked, "You check for any
urgent communication first, no matter what form it might
have come in?" she can compare this statement of strategy to
her own experience and validate it or refine it. She might
respond, "Yes, lots of things here are time-critical and we have
to deal with them right away"—simply validating the inter-
pretation, adding detail but leaving it essentially unchanged.
In fact, she responded, "Actually, things from my boss are
most important because they are for me to do. Messages on
the answering machine or faxes might be for anyone"—refin-
ing the interpretation, accepting the broad outline, but
adding a new distinction.

Because customers respond to the interpretation in the moment
of doing the work, they can fine-tune it quite precisely Customers
commonly make slight changes in emphasis such as those above to
make the interpretation exact. They can do this
because they are given a starting point that they can
compare with the experience they are now having
and adjust it, rather than having to start from
scratch. In this way, we use the close relationship

Sharing interpretations
teaches customers to see
structure in the work

Customers fine-tune
interpretations

60 Chapter 3 Principles of Contextual Inquiry

Nonverbal cues confirm
interpretations

between interviewer and customer to get very reliable data. In fact, it s
the only way to get reliable data; if we don't check it with the cus-
tomer immediately, we take away an understanding that is at least par-
tially made up.

However, interviewers do need to be committed to hearing what
the customer is really saying. They may say "no" to an interpretation,
but to be polite may not say "no" directly. Here are some indirect ways
customers say "no."

"Huh?"—This means the interpretation was so far off that
it had no apparent connection to what the customer thought
was going on.

"Umm . . . could be"—This means "no." If the interpre-
tation is close, the customer will nearly always respond imme-
diately. A pause for thought means that they are trying to
make it fit their experience and cannot.

"Yes, b u t . . . " or "Yes, and . . ."—Listen carefully to what
follows the "but" or "and." If it is a new thought, this is the
right interpretation and yours was wrong. If it builds on yours,
this is a confirmation with a twist or with additional informa-
tion. Customers say "yes" by twinkling their eyes at you as they
realize your words match their experience or by elaborating on
what you said—or by saying "yes" flatly, as if the whole point
was obvious.

We ensure the interpretation is true by creating and maintaining
the right relationship with our customer. With apprenticeship as the

starting point, we create a close, intimate partner-
ship. Partnership is a natural consequence of a con-
textual interview. For the entire time, we pay close
attention to this person, what he does and how he
does it, what gets in his way, and everything that's

important to him. We take an interest. Most people have never been
the focus of so much positive attention or had such an extended
opportunity to talk about what they do. They become invested in
making sure we get it right—that we see everything that's relevant and
that we take away the exact right shade of meaning. The closer our
relationship and more invested the customer, the less willing they are
to allow us to leave thinking the wrong thing. This is our safeguard
that our understanding is true to their experience.

The four principles of Contextual Inquiry

Clear focus steers the
conversation

Focus
Focus defines the point of view an interviewer takes while studying
work. Once the interviewer is in the customer's workplace and has
created a collaborative relationship with her, what
should he pay attention to? What aspects of work
matter and what don't? If the customer has control
over what matters, how can the interviewer steer the
conversation at all? The apprentice learns whatever
the master knows, and the master decides what's important. But the
interviewer needs data about a specific kind of work. The interviewer
needs to guide the customer in talking about the part of her work rel-
evant to the design. Focus gives the interviewer a way to keep the con-
versation on topics that are useful without taking control entirely back
from the customer. Focus steers the interview the same way that
friends steer conversations with each other. The topics the friends care
about—the topics in their focus—are what they spend time on. Any-
thing one friend raises that the other doesn't care about is allowed to
drop without discussion.

Taking a focus is unavoidable. Everyone has an entering focus, a
whole life history defining what they notice and what they don't.
Consider three interviewers watching a scientist go about her work:

One interviewer, a software developer, notices the quanti-
ties of paperwork the scientist uses to define the procedure she
follows, to record her actions, and to report her results.

Another interviewer is more familiar with the lab technol-
ogy and sees the kind of instruments she has and the prob-
lems she has getting them set up and calibrated.

The third interviewer was once a scientist and sees how
the scientist moves about her lab, getting out glassware and
chemicals and putting them on the bench near the equipment
she will use.

Each interviewer sets a different aspect of the work, all of which
are "true," but which may be more or less relevant, depending on
what is being designed.

Having a focus means that the interviewer sees more. The inter-
viewer who knows that paperwork is important will learn to distin-
guish the different kinds of paperwork: the method that defines what
the scientist will do, the notebook that records her actions for her

62 Chapter 3 Principles of Contextual Inquiry

Focus reveals detail

Focus conceals the
unexpected

experiment, the log books that record calibrations of equipment for
the lab, and the formal report of her results. Each of these distinctions

serves as the starting point for a new inquiry, push-
ing the interviewer's understanding of the lab work
wider and wider. A focus gives the interviewer a
framework for making sense of work.

To ensure the team sees aspects of work important to the problem
at hand, we set focus deliberately to guide the interview toward rele-
vant aspects of work. This project focus gives the team a shared starting
point, which is augmented by each person's entering focus so they
each bring their unique perspective to bear. (We discuss how to set
focus for different types of problems in the next chapter.)

If focus reveals detail within the area it covers, it conceals aspects of
work that it does not cover. Different people will naturally see different

things. Someone who notices paperwork cannot help
but notice when papers are being dragged around the
lab; someone who never thought about paperwork
cannot help but overlook it until his attention is
drawn to it. Meanwhile the first interviewer is ignor-

ing physical movement around the lab to get equipment, to the next lab
to borrow supplies that have run short, and into another scientist's
office to consult on the method used. These aspects of work may be
equally important to the design problem. The first interviewer's focus
has revealed rich detail in the use of paper, but how can she expand her
focus and learn about the other aspects of work? First, we set focus
deliberately to give the team a common starting point, an initial way to
see the work, allowing them to build their own distinctions and inter-
pretations on that base. Then, we use group interpretation in the cross-
functional team to allow team members to learn and take on each
other s focus over time and bring their own focus to bear on each other's
interviews (we discuss these sessions in Chapter 7). Finally, during the
interview, we use intrapersonal triggers—the interviewer's own feelings—
to alert the interviewer when they are missing something.

H o w T O E X P A N D F O C U S . Pay attention to intrapersonal
triggers to create a deliberate paradigm shift, from the understanding
of the work the interviewer started with to the understanding of work
that is real for the customer interviewed and relevant to the design
concern. The interviewer must be committed to seeing where an

The four principles of Contextual Inquiry 63

Internal feelings guide
how to interview

understanding does not fit and changing it, not to confirming existing
expectations. Inner triggers are flags telling the interviewer when an
opportunity for breaking a paradigm and expanding
the entering focus exists. They work because your
own feelings tell you what is happening in the inter-
view and how to act to fix it. Here are some triggers
to watch out for:

Surprises and contradictions: The customer says something, or
you see them do something, that you know is "wrong." Its something
no one else would do, something totally idiosyncratic. Or else its just
random; they had no particular reason for doing it. Any one of these
reactions is a danger signal. It means that you are—right now—allow-
ing your preexisting assumptions to override what the customer is
telling or showing you. The tendency is to let it pass as irrelevant; the
solution is to do the opposite. Take the attitude that nothing any per-
son does is done for no reason; if you think its for no reason, you don't
yet understand the point of view from which it makes sense. Take the
attitude that nothing any person does is unique to them; it always rep-
resents an important class of customers whose needs will not be met if
you don't figure out what's going on. Act like the apprentice, who
always assumes a seemingly pointless action hides a key secret of the
trade. Probe the thing that is unexpected and see what you find.

Nods: The customer says something that fits exactly with your
assumptions, and you nod. This is the reverse of the first trigger, and
it is tricky. What you are doing when you nod is saying that you can
hear the customer's words, match them with your own experience,
and know as a result that everything that happened to you happened
to them. Is this a safe assumption? Instead, take the attitude that
everything is new, as if you had never seen it before. The apprentice
never assumes the master has no more to teach. Do they really do
that? Why would they do that? What's motivating them? Look for the
paradigm shift. Look for ways that what they are doing differs from
what you expect.

What you don't know: The customer says something technical
that you just didn't understand or is explaining something and you
just aren't getting it. Now what? Are you going to admit your igno-
rance? Wouldn't it be easier to research the subject a bit back at the
office? No, admit your ignorance. Make the customer go back and
take the explanation step-by-step. Treat this as a good opportunity to

64 Chapter 3 Principles of Contextual Inquiry

Commit to challenging
your assumptions, not
validating them

step away from the expert role. You are there to learn, and you might
as well learn about the technology, too. No one else will be able to tell
you better what this individual is talking about. Even if the customer
doesn't really understand it either, the extent of their knowledge and
misinformation can be valuable for design. Furthermore, if you dont
ask, you'll get more and more lost as the conversation continues.

The easiest way to design a system is from your own assumptions
and prejudices. Breaking out of your preconceived notions of what the

system should be and how it should work is one of
your hardest design tasks. Using the customer to
break your paradigm intentionally counterbalances
the natural propensity to design from assumptions.
Triggers alert you to specific opportunities during
the interview to widen your entering focus, and the

open dialog encouraged by apprenticeship allows you to inquire when
you need to.

THE CONTEXTUAL INTERVIEW

STRUCTURE

The principles of Contextual Inquiry guide the design of a data-gathering
situation appropriate to the problem at hand. The principles say what
needs to happen to get good data, but the design problem and the
nature of the work being studied control the exact procedure to use.
Studies of office work can be conducted much more simply than stud-
ies of surgical procedures. The most common structure for Contextual
Inquiry is a contextual interview: a one-on-one interaction lasting two
to three hours, in which the customer does her own work and discuss-
es it with the interviewer. Each interview has its own rhythm, set by
the work and the customer. But they all share a structure that helps
interviewer and customer get through the time without losing track of
what they are supposed to do. Every interview has four parts:

The conventional interview: You, as the interviewer, and the
customer need to get used to each other as people. Running the first
part of the interview as a conventional interaction helps with that.
You introduce yourself and your focus, so the customer knows from
the outset what you care about and can start with work relevant to the

The contextual interview structure 65

Get to know customers

and their issues

focus. You promise confidentiality get permission to tape, and start
the tape recorder. Explain that the customer and her work is primary
and that you depend on the customer to teach you
the work and correct your misunderstandings. You
ask for any opinions about the tools the customer
uses (if relevant) and get an overview of the job and
the work to be done that day This is summary data,
not contextual data, so don't pursue any issues; instead, watch to see if
they come up in the body of the interview and pursue them then,
when they are in context. Unless the work domain is unfamiliar, this
part should last no more than 15 minutes.

The transition: The interviewer states the new rules for the con-
textual interview—the customer will do her work while you watch,
you will interrupt whenever you see something
interesting, and the customer can tell you to hold
off if it's a bad time to be interrupted. Anytime you
want to break social norms, it's best to define the
new rules for social interaction so everyone knows
how to behave appropriately. If you declare "lady's choice," ladies will
ask men to dance and no one feels awkward. Here, you want to create
the new rules for the contextual interview, so you state them explicitly.
This should take all of 30 seconds, but it's a crucial 30 seconds; if you
don't do it explicitly, you run the risk of spending the entire time in a
conventional interview.

The contextual interview proper: The customer starts doing her
work task, and you observe and interpret. This is the bulk of the inter-
view. You are the apprentice, observing, asking ques-
tions, suggesting interpretations of behavior. You are
analyzing artifacts and eliciting retrospective ac-
counts. You are keeping the customer concrete, get-
ting back to real instances and drawing on paper
when the customer draws in the air to describe something she doesn't
have in front of her. You are taking copious notes by hand the whole
time; don't depend on the tape to catch everything. You are nosy—
after a phone conversation, you ask what it was about. Follow her
around—if she goes to the files, you go along and peer over her shoul-
der. If she goes down the hall, you tag along. If someone comes to the
door and looks diffident about interrupting, you tell him to come on
in. And, of course, if the customer says she needs a break, you let her

Explain the new rules of

a contextual interview

Observe and probe

ongoing work

66 Chapter 3 Principles of Contextual Inquiry

have one. The principles of context, partnership, interpretation, and
focus guide your interaction during the interview.

The wrap-up: At the end of the interview, you have a chance to
wrap up your understanding of the work she does and her position in

the organization. Skim back over your notes and

Feed back a comprehensive
interpretation

summarize what you learned, trying not to repeat
verbatim what happened, but saying what is impor-
tant about the work, to her and to the organization.
This is the customer's last chance to correct and

elaborate on your understanding, and she usually will. Allow 15 min-
utes for the wrap-up.

Running a good interview is less about following specific rules
than it is about being a certain kind of person for the duration of the
interview. The apprentice model is a good starting point for how to
behave. Then the four principles of Contextual Inquiry modify the
behavior to better get design data: context, go where the work is and
watch it happen; partnership, talk about the work while it happens;
interpretation, find the meaning behind the customer's words and
actions; and focus, challenge your entering assumptions. If all these
concepts start to become overwhelming, go back up to the higher-
level idea of apprenticeship. You want the attitude of an apprentice;
you want to create an intimate relationship in which you and the cus-
tomer collaborate in understanding their work, using your focus to
help determine what's relevant. That's enough to run a good interview.

Contextual Inquiry
in Practice

What are we supposed to do?" an engineer asked us. "Knock on
peoples doors, asking them to let us watch them use our prod-

uct?" The answer in this case was "Yes, do that." Not without setting
up the visit ahead of time, of course, and there's some planning to do,
but in the end it all comes down to showing up and watching. Some-
times the most difficult barrier to introducing a new way of working
is people's assumptions about what is or is not "done."

But once people accept the idea that they are going to do some-
thing they never considered a possibility before, they need to know
exactly what steps to follow. Otherwise no real action can take place.
We're now ready to discuss the concrete actions that will enable a
Contextual Design project to get started. We will deal with team for-
mation in a later section; here, we will describe how to set the focus
for a project, how to plan who to talk to, and variations on the data-
gathering process that may be required by different problems.

SETTING PROJECT FOCUS

Before you can do useful work, you must define the problem you
intend to solve in terms of the work you plan to support. Typically, a
project's mission is defined in terms of the solution it will deliver: "an
ordering system for all departments," "the next version of product X,"
"an electronic clipboard for doctor's offices." (As we discussed in
Chapter 2, this is the kind of problem statement that is usually given
to the project team by marketing or by the internal client.) To figure

68 Chapter 4 Contextual Inquiry in Practice

Broaden your focus to
include the whole work

out what to do next—who to talk to and what to look for to decide
what is important in this domain—the project team must transform
this statement about the solution into a statement about the work.

Your initial project focus will usually be too narrow, too much
restricted to exactly the work of the tool you expect to build. To see

the whole work context and identify opportunities
and potential problems, you want to expand the
focus beyond tool use. Ask: What is the work we
expect to support? How does this work fit into the

process | customer's whole work life? What are the key work
tasks? These are the aspects of work to find out

about. Who is involved in making the work happen? Who are the
informal helpers? Who provides the information needed to do the job,
and who uses the results? These are the people to talk to. Where does
the work happen physically? What is the cultural and social context in
which the work happens? These constrain the interview situation you
can set up. These questions will guide you in thinking about how
your system fits into your customers' overall work. Use them to iden-
tify what kind of people you want to interview, what tasks you want
to see performed, and what you want to watch for while you're there.
Remember this is a focus, not a checklist. Use it to guide what you
pay attention to during the interview.

To expand your perspective on the work, look for metaphors for
the work—unrelated kinds of work that have the same structure as the

work you want to support. If you are studying
online search and retrieval, you can study how peo-
ple search for physical objects in libraries and gro-
cery stores. This will help you understand the basic
structure of finding, independent of technology and
content. If you are studying PC maintenance

groups, look at taxi dispatch services; the maintainers need to go out
on calls without losing contact with a central organization in much
the same way that a taxi is dispatched by the central office while
maintaining contact with the office and with other taxis. Studying a
taxi service would give insight into the problems of maintaining this
kind of coordination and suggest different ways of organizing the PC
maintenance group. Metaphors like this give you insight into the
work you are supporting, suggesting hidden aspects that might be
important. Use the metaphor to structure your thinking, and conduct

Study analogous work to
stimulate insight into how
work is structured

Setting project focus 69

interviews in the metaphor's work domain if it would be useful to
know how it really works.

With a clear statement of project focus, you are ready to apply it
to the particular project situation, starting by defining how to gather
data. Different kinds of projects will constrain the data-gathering
process in different ways: If you are extending an existing system, that
system defines the work you need to study If you are addressing a
new work domain, you need to be open in what you study. The kind
of data you look for will be driven by the work you plan to support,
but also by the goals of the project.

D E S I G N I N G T H E I N Q U I R Y

FOR C O M M E R C I A L P R O D U C T S

A project in commercial software may be generated in three principal
ways. Each different starting point implies a different set of issues and
a different way of collecting data.

Designing a known product: A "known product" is one of a
class of products that is known and accepted in the marketplace, like a
word processor or a spreadsheet. Competitive products are already
established. The market has expectations for this kind of product—
you must include certain capabilities to be taken seriously. This may
be the next version of a product you are already shipping.

Gather data on people using competitive products. You must
meet the market expectations they create. Gather data on the basic
work practice of the market, whether the customers

Look for the new

delighters: the

unrecognized needs

use competitors, your products, or no automated
systems at all. Use your existing customer feedback
channels to help set your focus. This will reveal what
aspects of work are currently not well supported.
Designing your product to support these unmet
needs will differentiate your product from the rest of the market. If
they are important enough, you will define the new field of competi-
tion for the next generation of products, just as the formatting capa-
bilities of early versions of Lotus 1-2-3 defined the new ground of
competition for spreadsheets. At the same time, gather data on
detailed tool use. You want to make sure that you do the expected
function just a little better than anyone else. You also want to pay

70 Chapter 4 Contextual Inquiry in Practice

attention to what aspects of existing products get in the users way,
and design ways to streamline it.

Addressing a new work domain: A new work domain is totally
new. It has been created by changing work or life practice (the fitness

industry) or new technological possibilities (tele-

All work is already being

done some way; study it

for clues

commuting) and is not addressed well by any prod-
uct. Any new product will change the way people
work in the market, and there's no existing product
to use as a guide. The danger lies in thinking that
because the work will be changed, there's no way to

study it. Before spreadsheets were invented, people did the work—
they used paper ledgers to chart their accounts. Before word proces-
sors were invented, people did the work—they used typewriters.
Define the work your new systems will replace, and study it to learn
what matters and how it is structured so the market can make the
transition to your new products. (This will not stifle any innovation
in your products. Both the first spreadsheets and the first word proces-
sors were developed through detailed understanding of the people in
their prospective markets.) Define the intent people are trying to
achieve. Gather data on people achieving their intent with current
tools. Look at how they use paper, informal contacts, and whatever
else is available to do what they need to do. Look for problems and
places where the lack of tools keeps them from trying to achieve their
real intent. Use metaphors to think about what may be important in
the new work domain.

The new market may be best addressed not by a single product,
but by multiple products working together to support the work com-
prehensively. When we discuss designing the system in Part 5, we'll
show how to manage multiple coordinated products.

New technology: Sometimes a project seeks to take advantage of
a technology that has just become available or affordable. Instead of
being tied to a particular work domain, the project is looking for
opportunities to use the technology. You may define specific products,
you may design alterations to existing products to take advantage of
the new technology, or you may discover that whole new markets
open up once the technology is available.

Look for analogs of the technology and how they are used in the
real world. If you are automating something that already exists, such
as sound or text-to-speech, look for places in everyday life where

Setting project focus 71

sound or speech is already used effectively. Look at the context: What
else happens when people talk, such as eye contact and nonverbal
cues? When is silence important? Look at what the
new technology replaces: for example, infrared links
replace signal-carrying wires, so where are wires
used? Network wires, control pad wires, speaker
wires. Look for the underlying metaphor of the new
technology and study that: a PDA (personal digital
assistant) is like a Day-Timer with smarts, so look at Day-Timers and
ask what you could do with them if they were smart. Look at the fun-
damental new characteristics introduced by the new technology: Wire-
less links allow moving around, so how is movement important? PDAs
are small, so how does size matter? And use metaphors for the technolo-
gy to get a different perspective of its use. Go to the places where the
new technology can make a difference to stimulate your thinking about
how it might be used.

Build on how analogs of
the technology are used in
the real world

D E S I G N I N G T H E I N Q U I R Y FOR

IT P R O J E C T S

IT projects tend to be driven by business needs. However, the state-
ment of need tends to focus on the immediate problem as perceived
by the customer. Responding only to the stated
problem usually results in a patchwork of small sys-
tems, each addressing a small part of the work in
isolation, and none working well with any of the
others. It's often necessary to negotiate the project
focus with the customer so that customer needs are
met but the resulting system also ties work together. The proper role
of IT is to work with the customer to step back, determine the
underlying issues that resulted in this problem, and work out a solu-
tion that ties the work and the information systems that support it
together. IT organizations always want to create and deliver coherent
systems that work together to support a business seamlessly. Any new
system should be defined to fit into the overall business strategy.
Tying the work together means IT organizations always want to be in
the business of process redesign. Rather than automating whatever
idiosyncratic work practice exists, IT benefits from working with
the customer to imagine changes to their process that take advantage

IT s role is to tie the work

together through

information systems

72 Chapter 4 Contextual Inquiry in Practice

of technology. There are three kinds of requests IT usually has to
deal with.

Upgrades: The request is to add or modify a feature of an existing
system. Typically this is called "maintenance" by the IT department.

We avoid this term because "maintenance" implies

Look at tool use and its
edges to extend the system

Ask: how will the new
system support the real
work of the department?

that no new, interesting work happens in this task.
In fact, much of IT's workload is in this kind of
"maintenance," and much of the improvement or
degradation of the information systems taken to-

gether is the result of "maintenance" work. So we borrow a term from
the commercial vendors and call these "upgrades." The upgrade
request is often stated in terms of a design change: "Just make it so I
can enter several orders at once." Your challenge is to understand the
reasons behind the request and design a solution that fits the need,
keeps work practice coherent, and preserves the integrity of the system
design. Look at the whole of the work task and related tasks to under-
stand how the change affects the work as a whole. Look at detailed
tool use to see what UI mechanisms work and which get in the way.
Look for other point requests that can be addressed with the same
mechanism.

New systems: The problem as stated is to provide a system to
support some aspect of the business (e.g., order processing). There is

no explicit intention on the client's side to change
the way they work in any major way. Introducing a
new system to automate the inefficient ways that
things are done currently is a waste. The challenge is
to move the design team and the client together to
invent ways to improve the work. The result will be

to define new ways of working and the software systems that support
them. Expand your statement of focus by looking at the whole work
process that the original request is a part of. How does it support the
real work of the department? If this is the primary intent of the process,
look at how the intent is accomplished. If not, ask what the intent is
and whether it can be accomplished in a more direct way. Is the process
contained in one department, or does it span departments? Plan inter-
views with people at each point in the process.

Process redesign: The project is started to implement a business
process reengineering directive. Typically the directive does not specify

Designing the interviewing situation 73

exactly what the new work practice will be or the exact requirements
on supporting systems. Instead, it just gives broad outlines of the new
process and hints of supporting systems. "In the new
claims-handling process, one person will be responsi-
ble for the claim from the time it comes in until it is
settled. All claim data will be available to all parts of
the company through a central database." The direc-
tive leaves open how the claims process works on a daily basis, how
people will interact with the new system, and exactly what kinds of
interactions the new system must support. The focus for such a proj-
ect needs to look at the customers of the new process: what do they
need, and why? Look at how the work is accomplished now: What
have people had to do to make the process work? What will get in the
way of introducing a new process? Helping people accept and adapt to
the new way of working is a part of the design problem. Plan how to
include the customers in the design process. When they are a part of
redesigning their own lives, they will more easily accept and adapt to
changes.

The project focus gives the team an initial cut of what they are
working on, who their customers are, and what the key tasks are. It
suggests things to look for in the field and suggests some of the places
to go. This prepares you to determine the specific interviewing situa-
tions needed to get the right data and make the project work.

D E S I G N I N G T H E I N T E R V I E W I N G

S I T U A T I O N

Your initial inquiry into the work gave you a focus for the project and
also revealed some characteristics of the work domain and told you
what work tasks you need to observe. Exactly how you will set up the
interviews is driven by the nature of these tasks. The key questions for
defining the interviewing situation are always: How do I get close to
the work? How close can I get? How do I create a shared interpreta-
tion with the customer? Different kinds of tasks make different
demands on the interview.

Normal: A normal task can be planned, is performed in a reason-
ably continuous session, and can be interrupted by the interviewer.

CD develops the details of

business process redesign

7A Chapter 4 Contextual Inquiry in Practice

Use a standard contextual
interview

Create a trail to walk and
talk with the user

Plan discussion breaks
between events

Writing a letter, delivering mail, installing software, and writing code
are all normal tasks. The interviewer can plan to be present to observe

a normal task and can interrupt at will to under-
stand it. Normal tasks can be studied through a
standard contextual interview. It may be useful to
ask the customer to save work of the sort you want
to study to do during the interview. This does alter

the normal work flow, but very minimally, and the increase in relevant
data makes it worth it. Audiotape these interviews, but videotape is
rarely worth the extra trouble. Videotape them only if the work is so
UI-intensive that you have to see the interaction to understand what's
going on, or if it s especially important to communicate the customer
experience to developers who can't go on interviews themselves.

Intermittent: An intermittent task happens at rare intervals over
the course of a day. It cannot be scheduled and does not last long. It s

so infrequent that the chances of observing it during a
standard contextual interview are low—you'd spend
hours to get five minutes of data. Looking something
up in documentation and recovering from a system
crash are intermittent tasks. The key to learning

about them is to create a trail that will enable the user to re-create a
retrospective account of the event. In documentation, you could ask
the user to keep a paper log of every time they use the documentation,
perhaps numbering the pages themselves so they can walk through the
story later. You could design the documentation so the user can keep
their log right in the documentation itself. You might instrument
online help, so the software automatically records what the user did.
Start with a face-to-face interview, then leave them to log what they
do. Return later to perform an interview that follows the form of a
retrospective account, walking through each artifact in turn to discov-
er what the user did.

Uninterruptable: Some tasks simply cannot be interrupted to do
the interpretation. A surgical operation, a high-level management
meeting, and a sales call are all situations that cannot be stopped to

talk about what is going on. In these situations you
want to capture the events clearly enough that you
can recall all the details later. You might plan inter-
ruptions, such as providing for regular 15-minute
breaks in a long meeting where participants can

Designing the interviewing situation 75

Create interviewing
situations that reveal a
cross section of work

discuss what happened in the part of the meeting just concluded. You
might videotape the event, then review the videotape with the cus-
tomer, stopping to discuss events as they occur. If even videotape is
too intrusive, you can at least keep good notes and review them with
the customer. If you videotape, interpret the tape with the customer.
You lose too much insight and cannot be sure of your interpretations
if you review the tape alone later.

Extremely long: Some tasks take years to complete. Shipping a
major software system, developing a new drug, and building a 747 are
all tasks that take substantially longer than the two to
three hours of a typical contextual interview. To
understand tasks of this sort, pursue two strategies:
first, interview a wide range of users at different
points in the process and playing different roles in
the process. Since work strategy repeats, common
patterns will emerge even though the cases are different. Then, choose
willing customers with the best examples and do a work walkthrough,
which is like an in-depth retrospective account. Set up an event in
which customers bring in project documentation from all parts of the
process and walk through the history of the project, week by week,
meeting by meeting. Use the project artifacts to ground the inquiry.
Include project documents, such as plans, reports, and designs, and
also process documents, such as the calendars and email of those most
concerned. Use the artifacts to drive the conversation. Expect this re-
creation to take a day or two.

Extremely focused: Sometimes the problem is so focused on the
minutia of a person s actions that it's too hard to run a standard inter-
view. You might be polishing the detailed interac-
tion of a computer user with an applications UI or
studying the details of how a craftsman manipulates
his tools. You would miss too much if you depended
on unaided observation, and you would also get in
the way of the work too much if you interrupted every moment. This
is a case where videotape can be useful. It will capture the details you
would miss, and you can run it repeatedly until you understand a par-
ticular interaction. But view it and interpret what you see with the
user. You cannot understand all their motivations on your own.

Internal: Sometimes the inquiry needs to focus on internal mental
processes, such as how decisions are made. In this case, the interviewer

Videotape and interpret

with the user

76 Chapter 4 Contextual Inquiry in Practice

must be present when the mental process is happening because there's
no way to recover enough in a retrospective account. You may need to

create events that will cause the mental process to

Use ongoing observation

with lots of interruption

happen so that you can be present. Then interrupt a
lot; make a lot of hypotheses about what the cus-
tomer is taking into account in their thinking. Warn
the customer this will be very disruptive, but as long

as the customer has to make the decision, they will keep working
through it and you will learn something about how they do it.

Interview customers whose
work is as different as
possible

D E C I D I N G W H O T O I N T E R V I E W

At this point you know what you are looking for and you know how to
set up the interview for the tasks you need to observe. Now you must
start putting names on the customers you will visit. In general, you
want to interview two or three people in each role you identified as
important to the focus. You want to collect data from 10 to 20 people
in all, unless the focus is very narrow. Six to ten interviews is sufficient if
there is only a single role or you are studying detailed UI interaction
instead of overall work process. If you are making commercial software,
you want to go to at least four to six businesses to see variety. In choos-
ing sites and individuals, go for diversity in work practice. You are look-
ing for the common underlying structure that cuts across your customer
base. You will do this best by studying very different customers, rather
than studying similar customers to confirm what you learned.

Diversity in work practice usually is not equivalent to diversity in
market segment. Financial institutions, high tech, and retail may be

different market segments, but office work is done
very similarly in any modern corporation. These dif-
ferent types of companies will not give you substan-
tially different perspectives. In fact, office work is so
similar it is actually hard to get a different perspec-
tive. One design team studied the military and Japa-

nese companies, in an attempt to find cultures that would be substan-
tially different; they found little that was new. To get different work
practice, look for different business strategies (doing the work as a
business for hire vs. doing it as a department in a large company).
Look for cultural differences (a trucking company vs. a high-tech

Deciding who to interview 77

Let focus changes drive
customer selection

company). Look for different physical situations (a company distrib-
uted across several states vs. a company located at a single site). Look
for differences of scale (a small business vs. a large corporation). If
your customer is internal, see if you can study similar work practice in
other companies. Look for other places in your own company where
similar work is done, and study it. Use metaphors to give you differ-
ent ways of thinking about the work.

Given these parameters for numbers and diversity, choose the
people you will interview. It's okay to be smart when choosing—
include the important client who has to buy into an
internal project. Focus on customers from the key
markets you think are most likely to spend money.

Expect setting up customer visits to take a cou-
ple of weeks, by the time youVe found the right per-
son to interview, talked to all the people who are affected, and have
set everyone's expectations correctly. However, don't get too far ahead
in lining up the visits. As you study the data, you will change your
idea of what to find out about next. You don't want to be locked into
studying ten documentation writers after you've studied three and dis-
covered that, for your purposes, they all work in much the same way.
Make sure you talk to the people you will interview individually in
advance and that they understand what will happen.

Your inquiry into the work that the project supports will yield lots
of detail about the work and what to look for. It will be too much for
anyone to keep track of during an interview. So boil
it down to a short statement of the key characteris-
tics of the work. This statement can be written by
interviewers in their notebook and will keep them
on track during an interview. A focus for an order-
ing system might be "how people find out about,
decide on, and make requests for the things they need to do their
work." Such a focus implies things to look for during an interview:
"how people learn about what is available, through catalogs, friends,
and local experts, whether formal or informal; who is involved in the
decision and how they come to agreement; what processes have to be
used to make the request and who gets involved in filling it."

The initial focus will be revised and expanded through inquiry into
the work. (In the above example, the team discovered that it matters to
people to track the requests they have made and when they are expected

A pithy focus statement
keeps the interview
on track

78 Chapter 4 Contextual Inquiry in Practice

Customers feel heard and
valued after an interview

to be filled.) Focus statements are best when they use simple language.
People looking for "requests" will think more broadly about what a
request might be and how it might be filled than people looking for a
formal-sounding "order." The result will be greater insight into the work
and consideration of a greater range of possible solutions.

M A K I N G IT W O R K

For commercial software and internal systems alike, the crucial first
step is to ground the design in relevant customer data. This part of the

book has given you a solid grounding in the basics
of setting up and running a successful interview.
This way of collecting customer information is new,
and most organizations do not have the procedures
in place to make scheduling these interviews easy.

The groups that have the easiest time are those who already create
events with individual customers, such as usability tests or focus
groups. There can be internal resistance, too. The sales force, market-
ing, or the internal customer representative can be suspicious of let-
ting engineers talk directly to customers. (See Chapter 20 for strate-
gies on dealing with resistance.) But reactions to the visits are nearly
always enthusiastic. Customers feel like they are being listened to for
the first time, and the sales force and marketing soon come to recog-
nize the benefits. When the customers are internal, they feel like they
have control over the new system. Teams developing custom software
often do more interviews than strictly necessary to allow everyone to
participate.

As with all skills, experience comes with practice, but you need
neither experience nor practice to get started. Whether you are work-
ing on the initial requirements for a large system or are refining the
UI of a small system, you can define a data-gathering strategy appro-
priate to your project. A few interviews run along these lines will
return a wealth of data on the customers you serve and the work they
do. Increased interviewing skill will come with experience.

But be warned: it's addictive. People who get used to having con-
textual data when they design often have a very hard time breaking
the habit.

P A R T

Seeing Work

This page intentionally left blank

A Language of Work

For customer-centered design, the first task of a design team is to
shift focus from the system that the team is chartered to build and

redirect it to the work of potential customers. Work, and understand-
ing work, becomes the primary consideration. But "work" is a slippery
concept. What is work? You could keep a log of each action I take
throughout the day. Is this work? I talk to a colleague and agree on
who will handle which parts of a writing task. Is this work? I worry
about the latest merger and whether my job will be cut. Is this work? I
get up, walk down a corridor, up a flight of stairs, and into a locked
room to get a printout, only to discover that the print queue is hung
and I will have to restart it from my office. Is this work? If you want
to know about work, what do you pay attention to?

This question is particularly acute for a design team. Any system
is the result of agreement between engineering, marketing, customers
and customer representatives, documentation, and
testing. If these disparate people are to use their dif-
ferent disciplines to contribute to the system, they
must come to a shared perception of how customers
work. Putting work experts—psychologists, anthro-
pologists, or domain experts—on the team helps,
but they need to learn how their unique insight contributes to system
design. Other members of the team may not be experts in understand-
ing work practice, how it is structured, and how it hangs together as an
organizational and social whole. As we discussed in Part 1, what people
see and talk about is constrained by their entering focus—by what they
have concepts for. If they have no concepts for work, they will talk
about things familiar to them: the technology they can use to build the
system, its internal structure, and its user interface. To take best advan-
tage of techniques such as Contextual Inquiry, people need to learn

A system design results
from agreements between
the responsible people

82 Chapter 5 A Language of Work

A language creates a way
for people to see and
talk together

concepts that show them what to see when they are with the cus-
tomer—and given the constraints of real engineering projects, they
need to learn these new concepts quickly

USING LANGUAGE T O FOCUS
THOUGHT

A formal language for talking about work organizes concepts that help
people learn to see work. It is natural for people to embody a new
domain of knowledge in a language that expresses ideas in that
domain. A language makes the key concepts of the domain concrete in
symbols or words. This is what jargon is—specialized words and spe-
cialized uses of ordinary words that embody concepts useful to some
domain of expertise. So knitters create "purl" to describe a stitch, use
"knit" to describe another stitch (as well as the whole activity), and
when they "cross stitches," they do something quite different from the
"cross-stitch" in needlepoint. In the same way, mechanics use "ping"
and "knock" to describe specific symptoms common to engines, con-
fusing those of us who think those words just represent noises.

A specialized language of this sort creates a focus—a set of things
to pay attention to. Expertise about the knowledge domain is cap-

tured in the language and becomes available to any-
one who learns the language. Once you know that
engines ping and knock, you can start to make sense
of the noises your engine makes. The language gives
you a way to see—a framework for interpreting the
things you observe and a structure of understanding

you can elaborate as you learn more. (Once you know about ping and
knock, you can ask what other noises your engine makes. Do they
provide more clues to potential problems?) The new language expands
the team's entering focus to include work concepts, enabling team
members to see more of the details of work when they interview. And
just like the interviewing focus, team members can expand on their
language of work, creating new concepts and distinctions unique to
the work domain they are designing for.

Because a language creates a focus, it is not neutral. It directs your
thought. Any language is designed to say certain things easily—the

Graphical languages give a whole picture 83

things for which it provides concepts. Artists have a language of color,
shape, and shade to talk about the sky; meteorologists have a language
for talking about the sky, too, but it is very different
from the artist s language. Which language is better
depends on whether your current concern is aesthet-
ics or weather. A language of work for design will
represent those aspects of work that matter for design. A design team
building accounting systems for lawyers doesn't need to know every-
thing about the law—just those aspects of legal practice affecting how
lawyers run their businesses. Even a lawyer or anthropologist on the
team will have to learn to focus on those aspects of work that matter
to the design problem at hand.

GRAPHICAL LANGUAGES GIVE A

WHOLE PICTURE

Languages don't have to be textual. Graphical languages—formalisms
or diagramming techniques—share all the advantages of a textual lan-
guage. Instead of words, graphical languages use symbols, each con-
veying a defined concept. Just as syntax rules restrict how words can
be combined in a textual language, drawing rules restrict what can be
drawn in a graphical language.

For design, a graphical language has definite advantages. Because
the number of symbols in a graphical language is small—usually less
than 100—a graphical language focuses thought
even more intensely than a textual language with
thousands of words. It is possible to learn all the
symbols of a graphical language, and once learned
they suggest how to use them. Just as when you
learn a new word, you suddenly notice the word

A language directs thought

Sparse graphical

languages provide greater

guidance for thought

used everywhere, the symbols of a graphical language cause a design
team to notice the distinction they represent. They become part of the
design focus, revealing more detail about work.

Unlike a textual language, graphical languages let you take in a
whole picture at once. A textual language must be read and parsed; this
is not only a difficult chore, but the information has to be taken in
sequentially, one idea at a time. Given reasonable methods for handling

84 Chapter 5 A Language of Work

A picture reveals pattern

and structure of work

Writing things down is a

central tool for creativity

complexity, a picture can be scanned and taken in as a whole. A picture
is a better external representation than a page of text because it's easier

to see what you are talking about. A picture reveals
overall pattern and structure by showing each part in
relationship to the whole. This is critical to creative
work and to design (Suchman 1989). Once a team
understands how work fits together, they can identify

sets of problems and needs to address together. Without a coherent
understanding of work, each need stands alone and can only be
addressed as a point problem. It s impossible to see when a solution to
one problem creates new problems elsewhere—just as automated
phone systems solved the problem of giving quick answers to standard
questions, but made it difficult to get to a live person to deal with non-
standard situations. A diagram supports systemic thought and makes it
possible to create a coherent design response that fits well with the
work it supports. (Hutchins [1995] discusses how artifacts support and
enhance thought.)

WORK M O D E L S PROVIDE A

L A N G U A G E FOR S E E I N G WORK

For these reasons, we use work models as a graphical language to capture
knowledge about work. They provide a shared focus on work that gives

the team an external, concrete form to record and
communicate what they saw on customer visits. As
long as work practice remains insubstantial and invis-
ible, there's no good way to share what you learned,
to validate your understanding with the customer, or

to check that your design really accounts for the work practice you dis-
covered. Models make concepts concrete, creating a physical artifact
that the team can share, talk about, and touch. Teams can use them to
understand what each team member is really saying about the work. If
the team includes work experts, models give them a way to make their
insight explicit and communicate it to the rest of the team. The team
can share their understanding with customers to ensure that it is correct.
And designers can check the models to ensure they are not forgetting
some aspect of the work that will cause their design to fail. Creating

Work models provide a language for seeing work 85

concrete artifacts is critical to creativity—its a cliché that great designs
are first recorded on the back of a napkin. Models provide a way for
people to record their thinking so it can be seen and manipulated.

By providing a coherent, synthetic view of work practice, work
models give design teams effective ways to handle qualitative data.
Any qualitative technique such as Contextual

Graphical models
organize huge amounts
of data

Inquiry produces huge amounts of detailed knowl-
edge about the customer. This knowledge is critical
to system design, but it isn't amenable to reductive
statistical techniques: you can't take the average of
20 interviews to identify the "typical" customer.
Work models provide a coherent way of structuring all this detailed
data, revealing underlying structure without glossing over the detail.

Graphical languages do exist already in systems design. Process
flows, state transition diagrams, object models, data flow diagrams—
all use graphical languages to represent some aspect of system design.
Each, by the concepts it presents, focuses the designer on a certain
way of thinking about the problem. But few of these diagrams focus
on people and how they work. A data flow diagram focuses on the
flow of data, and the operations performed on it, independent of the
people involved (Yourdon and Constantine 1979). A process map
shows processes and tasks, but not how they map to a person's respon-
sibilities or environment. An object model shows things—objects—
and the operations that the objects perform or their responsibilities.

It is logically possible to use a technique like object modeling to
represent other concepts, but in practice it can't be done. It's like say-
ing that all programs could be written in machine
code so any other programming language is unnec-
essary; it's logically true, but actually writing any of
today's systems in machine code would be so over-
whelming that they would never be written. In the
same way, you might represent all the aspects of work in an object
model, but the conceptual task of interpreting the model would be
overwhelming. You would have to inquire into each object and inter-
pret what it said about the work. The work of people is still invisible.
Furthermore, the language of work needs to focus on the concepts of
work that matter; generic object modeling cannot provide a focus. It
cannot guide our thoughts. (Sumner [1995] provides further research
into designers' use of multiple representation.)

Good models substitute

for seeing the work itself

86 Chapter 5 A Language of Work

Five different perspectives

make the complexity of

work comprehensible

Instead, design teams need a representation of work that makes
the important aspects of work for design apparent. The models will
stand in for seeing the work itself; once team members are familiar
with them, the team should be able to look at a model and envision
people doing the work it represents. A mental translation from the
distinctions in the model to relevant work concepts gets in the way.

W O R K M O D E L S R E V E A L T H E

I M P O R T A N T D I S T I N C T I O N S

Contextual Design provides five different types of work model to rep-
resent customer work practice: flow, representing the communication
and coordination necessary to do the work; sequence, showing the
detailed work steps necessary to achieve an intent; artifact, showing
the physical things created to support the work, along with their
structure, usage, and intent; culture, representing constraints on the
work caused by policy, culture, or values; and physical, showing the
physical structure of the work environment as it affects the work.
(The next chapter describes each in detail.) Each type of model pro-
vides its own perspective on the work and synthesizes all aspects of
work in its focus into a single, coherent diagram. Having multiple
types of work model gives a team more ways to see issues and struc-
ture in the work, while allowing each model to focus cleanly on one
aspect of work.

We find that these five models are usually sufficient to support all
the design conversations a team needs to have—the combined focus

they provide covers the main issues for most design
problems. As we will see, they support the chain of
reasoning from data to design. As with any focus,
the work models both reveal detail in the areas they
cover and conceal detail that falls outside. When it's
necessary to expand a focus to explore issues that the

work models do not cover, having work models suggests that new
models might be created. For example, though the flow model shows
the overall coordination between people, it does not show the contin-
uous give-and-take between two people collaborating on a project. It
also does not show what is going on interpersonally between people

Work models reveal the important distinctions 87

over the course of a conversation. When a design problem requires
understanding these or other aspects of work, we create new models
to show them explicitly. (See "Readings and Resources" for other
approaches to modeling work.)

After interviewing each customer, the team runs an interpretation
session to recapitulate the interview and record what they learned
(interpretation sessions are described in Chapter 7).
During the session, they draw work models relevant
to their project focus. Once a team has generated a
set of work models for each customer interviewed,
they can use the models to look across customers and
identify common pattern and structure. This is the
basis of our consolidation process, which takes a team from the work
of individual customers to understanding the work of a whole market
or department. Since any system will be used by multiple people, this
is a critical step in design. Without an explicit way to build a represen-
tation of how potential customers of a system work, the design team
must generalize in their heads from specific instances. The models
make this an external step that can be communicated, shared, and vali-
dated. The final consolidated models are the basis of design—the sin-
gle statement of the work practice that must be supported, improved,
replaced, or obviated if a new system is to be successful.

We'll discuss the consolidation process in Part 3. In the following
chapter we'll discuss each work model in turn and then describe the
interpretation session in Chapter 7.

Work models capture user
activities observed during
a contextual interview

This page intentionally left blank

Work Models

Each of the five types of work models has its own concepts and sym-
bols representing one aspect of work for design. The five models

were developed over time to meet the needs of the design problems we
encountered. They represent the key aspects of work that design teams
need to account for in their designs. We have found these five to be
necessary to almost every problem and sufficient for most.

Work models are first built to describe work from the point of
view of the one person interviewed. They do not and are not intended
to represent everything that a person or his organization does. Each
interviewer learned about some part of the customer s work as it relat-
ed to the project focus. They also learned something about the work
of the organization, as understood by this one customer. The first
models we build represent this individual perspective. We even use
conventions to show which parts of a model are built from the cus-
tomer s actual experience and which represent the customer telling us
how his organization is supposed to work.

T H E FLOW MODEL

To get work done, people divide up responsibilities among roles and
coordinate with each other while doing it:

A rush order comes in. The woman who receives it calls
the person responsible for filling it and mentions, in passing,
that a rush order is on the way. The rush order will be shipped
on time only because of her informal advance warning. When
a new order-processing system is introduced, it does not allow
this advance warning and rush orders start shipping late.

A purchasing department is responsible for paying invoic-
es as they come in. But they don't know if the goods were

6

90 Chapter 6 Work Models

No real work happens

in isolation

actually received; they have to figure out who received the
goods, send the invoice to him for approval, and pay it only
when he returns it signed. Making the purchase and paying
for the goods have been separated from the actual work of the
organization. Formal sign-off and review processes keep the
system working. The purchasing department gets so involved
in maintaining these formal processes that they cannot handle
finding vendors and making purchases well.

A specialist in another organization gets ready to produce
a report. In times past he would have had a secretary type in
and format the report; these days he not only creates the con-
tent, but he also defines the formatting and layout, checks
spelling, and proofs the document as well. He has more con-
trol over the document in his own hands, but it's not clear
that it s cost-effective for a highly paid professional to do basic
stenographic and editorial tasks.

In each of these cases, the key issue is how people's roles are
defined and how they communicate to get the job done. The order

receiver had to communicate with the order proces-
sor to get rush orders accomplished on time; the
invoice payer had to communicate with the goods
user to find out if the invoice should be paid; the
content provider became the page designer, instead of

handing the content off to a secretary who could have played that
role. All work in this world involves other people to some extent.
Books are written for an audience, based on sources, submitted to
reviewers, and passed to publishers. Code is written by developers for
its users, from requirements, tested by a testing group, marketed by a
product marketing group, and distributed to customers. Depart-
ments exist because a single person alone can't get the work done; the
work must be broken into parts, which then must be coordinated.
Different departments coordinate the different parts of the work, and
people within a department coordinate to get its work done. The
flow model represents this communication and coordination neces-
sary to make work happen.

R E C O G N I Z I N G C O M M U N I C A T I O N F L O W

Workflow (Figures 6.1 and 6.2) defines how work is broken up across
people and how people coordinate to ensure the whole job gets done.

The flow model 91

FLOW M O D E L D I S T I N C T I O N S

The individuals who do the work. In the consolidated models, the roles they play (see Part
3 for a discussion of consolidation). Each person or group is shown as a bubble. The intervie-
wee's bubble is annotated with user number and job title. Everyone else's bubble just has job
function.

The responsibilities of the individual or role. This is a list of what is expected of them—
"coordinate schedules of all managers," "ensure samples are processed in the shortest possible
time." Every bubble and place on the flow model is annotated with responsibilities.

Groups, sets of people who have common goals or take action together. Outside people
may interact with the group as a unit, without knowing any individuals in the group. They say
things like "I sent it to purchasing"; the particular person in purchasing doesn't matter. Groups
are represented when a person has the same interaction with all its members. We may also
show the interaction between a group member and the group as a whole.

Theßow> the communication between people to get work done. Flow may consist of
informal talk and coordination, or it may consist of passing artifacts. Flow is shown as arrows
between individuals.

Artifacts, the "things" of the work, which are thought of and manipulated as if they were
real. An artifact may be physical, such as a document or message. It may also be conceptual;
for example, if a design conversation is thought about as though it has members, a history,
attributes (public or private), and an existence separate from any one member or topic» it may
warrant representation as an artifact. Where appropriate, the mechanism is shown—email vs.
paper, for example. Artifacts are shown as small boxes on a flow.

The communication topic or action representing the detail of the talk or coordination rep-
resented by a flow. These are actions as opposed to artifacts, such as talk to set up meetings,
arranging for review, asking for help. Examples might be "question about the system" or
"request for help/ ' Communication is written on a flow without a box.

Places that people go in and out of in order to get their work done, if it is central to the
work of coordinating and collaborating. This is often a meeting room or communal space such
as a coffee area. It is shown as a large box annotated with name of place and responsibilities.

Breakdowns or problems in communication or coordination, represented as a red light-
ning bolt (black in this book). 3

How do job responsibilities get assigned to people? What are the
different roles people take on to get work done? How do new tasks get
passed to a person? Who do they get help from? Who do they have to
work with to accomplish their tasks? How do they use physical places
and artifacts to help them coordinate? Who do they give the results to
and in what form? Work flow is the rich pattern of work as it shuttles
between people, the interweaving of jobs and job responsibilities that
gets the work done. Work flow represents every phone call between

92 Chapter 6 Work Models

President
—Run the business

-Keep abreast of what's going on
-Sign checks

—Go on trips

Signed checks Worker
(— Do the work of the business

-Meet with management

Department's
reports

Checks to sign

Request to
help with family
vacation plans

*
U1

(Secretary)
—Keep office organized

—Ensure bills paid on time
—Do final proof, print, and distribution of documents

Manage and coordinate schedules
Handle logistics of trips

Requires lots of
iterations

Request to
schedule meeting

with president

i

Proposal to
proof and mail

Marketing manager
-Run the marketing department^

—Produce proposal

Announcement

Bulletin board
—Announce events of general interest

—Hold documents that manage
shared projects

F I G U R E 6 . 1 Secretarial work. This flow model is typical of secretarial work. Sec-
retaries often act as the center, the hub, of a department. In this model, we see this
graphically in the many lines that diverge from the central bubble. We can see the
great diversity of the hub function in the many types of communication on the
lines—everything from formal reports being passed up the management hierarchy to
informal requests to smooth the personal lives of people in the department. The
accretion of hub responsibilities in one person is natural; once a person is coordinat-
ing one aspect of an office, it is natural for them to coordinate other aspects as well.
From this diagram we see the nature of hub work—lots of different activities, com-
munication with lots of different people, lots of interruptions, and lots of tasks going
on at the same time.

two people, every document passed for review, every email message,
every conversation between people in the hall. These are all instances
of passing an artifact, communicating information, or coordinating to

The flow model 93

Test user
-Run software and use

documentation
-Report all problems

Discussion of
problems Documentation

U2
(Documentation writer)

—Create documentation from
specifications and the actual product

—Validate documentation with developers
and the actual product

—Test all examples

Drafts for review

Discussion of
assignments

/
Discussion of

z
Marked-up drafts

Z

Discussion of
system problems

Discussion of

Marked-up drafts

Product versions
\ Z

Specifications

Work assignments
review

Writing standards

Drafts for
review

Editor
-Check drafts for accuracy, consistent
layout, grammar, and terminology

-Assign writing tasks

Developer
-Write the software

-Review documentation for
accuracy and completeness

F I G U R E 6 . 2 Creative work. This flow model is typical of creative work. We see
communication with those who depend on the work and with those who assist in
the creation. But most of the interactions are focused on the task of creation. Com-
pared with the "hub" type of job, this work is much more continuous and coherent.

do a job, whether as part of a formal process or as an informal way to
get the job done.

When people coordinate through email or paper, its easy to see.
It's harder to see how casual conversation and handwritten notes sup-
port work flow. Here's what to watch for in an interview.

C O O R D I N A T I O N . Any artifact received or handed on indicates
coordination with someone else. Where did it come from? Who created

94 Chapter 6 Work Models

Represent every contact
people make

Note what responsibilities
people take on—even
responsibilities that are
not part of their jobs

it? Who will see it next? Find out the whole story to see how the work
fits together. Any discussion with someone else, through a phone call,

email, or by dropping in personally, also indicates
coordination. Is this discussion critical to the work?
Where are the problems in coordinating? Do people
forget? Do they spend a lot of time on it? Look for
opportunities to automate communication that is

currently manual and haphazard. See if you can eliminate the need for
coordination by providing information directly or by combining roles
that are currently separated.

S T R A T E G Y . What strategy is implicit in how the roles are orga-
nized? Listen to how the customers talk about their job. How do they
see themselves in the organization? What do they consider to be their
unique contribution to their department? What is the unique contri-
bution of the department to the company? How does it further the
business? Ask whether the role is really critical to the business. If not,
why was it put in place? Could that intent be accomplished more
directly, or is the intent irrelevant to the business? (One purchasing
department has a role devoted to providing PO numbers. PO num-
bers support their process, but give no direct benefit to the business.)

R O L E S . What makes a coherent role? Watch the tasks people do.
How do they hang together? Which tasks require similar knowledge,

tools, procedures, or data? When does doing a task
require knowledge of the progress made in doing
another task? These tasks tend to be performed by
the same role. Technicians, for example, need to
know the history of a problem and of prior attempts
to fix it in order to serve the customer well. If prob-
lem calls are handed out to the first available person,

regardless of history, service will be poor.

I N F O R M A L S T R U C T U R E S . Look at the ways people go be-
yond the formal structure: A secretary becomes known as the expert
on creating forms. Soon whenever anyone has a particularly difficult
form to create, they pass it to her and she does it for them. A scientist
has special instructions to communicate to her lab technician. She
writes a note on a materials tracking tag, knowing he will see it. A

The flow model 95

manager has to assign resources to get things out on time. He invents
a status meeting to get it all done. He consciously runs it like a com-
bination bingo game and commando operations
center to keep people involved and excited. Each of
these people is inventing process and communica-
tion mechanisms to support the work they need to
do. They show where the formal process definition
of the organization is inadequate and reveal opportunities for support-
ing people's needs more directly. Could you give scientists a better
channel to their technicians? Could you eliminate the need for the
status meeting with a work assignment and coordination tool? Study
the meeting to see what the tool needs to do—and don't overlook the
way people ask for and get help around the edges.

Look at the actions people

take without thinking

C R E A T I N G A B I R D ' S - E Y E V I E W

OF T H E O R G A N I Z A T I O N

The flow model offers a bird's-eye view of the organization, showing the
people and their responsibilities, the communication paths between
people independent of time, and the things communicated—either tan-
gible artifacts or intangible coordination. People and organizations are
bubbles on the model, annotated with their position and responsibilities
(roles are not represented directly until we consolidate models across
people). Flow is indicated as arrows between bubbles, with the kind of
communication written on the line. Artifacts are shown in boxes on the
line; informal communication and actions are written without a box.

Where places such as meeting rooms or virtual places such as
shared areas support communication, the flow model shows them as
well. When a place is important to coordination—
meeting rooms, bulletin boards, and shared drop-
off areas—they appear as large boxes at the end of a
flow. Just as individuals are annotated with their
responsibilities, places list their responsibilities in
supporting communication and coordination. Au-
tomated systems and databases usually should not
go on the flow. The only exception is when they are acting like a phys-
ical place or like an automated person, and they are critical to coordi-
nation between people. Then they are shown as a large box with
responsibilities.

Represent locations,
things, and systems when
they make a place to
coordinate

96 Chapter 6 Work Models

The real interactions

between people reveal

glitches in the work

When communication breaks down—people don't get something
they should have received or don't respond when a response is need-
ed—we show the problem with a lightning bolt.

Do not limit the model to the formal definition of how work is
supposed to be done. The defined process of the organization is not a

good guide to how work is actually accomplished.
Every day, the people in the organization design
how their jobs will really be done. As they encounter
problems and obstacles, they create solutions, and
the solutions become part of the real work. The flow
model needs to capture how work is really done,

including all the informal interactions that make it work. From this
representation, you can find good work practice to incorporate into a
system, identify problems to eliminate, and see the pattern of commu-
nication a system must allow for.

THE SEQUENCE MODEL

Work tasks are ordered; they unfold over time. But the steps people
take aren't random; they happen the way they do for a purpose:

A man reads a mail message and, after replying, saves it
in a folder called "Phone book." He'll never need that mes-
sage again. He's just saving it because it has the sender's tele-
phone number on it, and it's a convenient way to look it up.
So telephone numbers matter even when email is the primary
form of communication, and telephone calls may be trig-
gered by email. Anyone trying to build the complete personal
organizer can build on this to tie phone contacts and email
together.

A woman paying her bills first gets out her checkbook,
bills, paper record of accounts, envelopes, and stamps; then
records the amount of every bill and makes sure she can pay
them all; then writes each check in turn; and then puts each
in an envelope and addresses it. So the stages of paying bills
are collect and organize; plan what to pay and how, making
sure not to overdraw the account; actually pay the bills; and
put them in envelopes to send out. A home accounting pro-
gram can build these steps in directly.

The sequence model 97

A scientist is interpreting the results of an experiment. He
puts the raw numbers in one column, then in each successive
column shows the result of one transformation. He needs to
see not just the final result, but the process by which those
results are achieved. An analysis tool that hid the calculations,
and only revealed the result, would not be acceptable.

The actions people take in doing their work reveal their strategy,
their intent, and what matters to them. A system that builds on these
can improve the work they do. Understanding the
real intent is key to improving work practice; you can
redesign, modify, and remove steps as long as the user
can still achieve their underlying intent. An intent is
stable—for example, people have had the intent of
communicating over a distance for ages. The steps, the way that intent
has been achieved, have changed over time—from handwritten mes-
sages to the telegraph, the telephone, and videoconferencing. Support-
ing the current work steps just automates the way things are done cur-
rently (and because paper is almost always faster than computers, if the
system does nothing but automate existing steps, it almost always loses).
The goal is to change the work steps to make work more efficient. But
the system must support all the intents concealed in the work, not just
the primary espoused intents. If users have an intent of planning how to
pay bills before they start writing checks, and the system doesn't support
planning, the system will not be accepted.

All work, when it unfolds in time, becomes a sequence of
actions—steps to achieve an intent. A sequence model (Figure 6.3)
represents the steps by which work is done, the trig-
gers that kick off a set of steps, and the intents that
are being accomplished. They are your map to the
work that your new system will change. Sequence
models supply the low-level, step-by-step informa-
tion on how work is actually done that designers
need to make detailed design decisions. The sequence model is most
similar to flow diagrams or task analysis (Carter 1991), but is unique
in stating the intent and trigger for the sequence. A sequence model
starts with the overall intent of the sequence and the trigger that initi-
ates it. Then it lists each step in order, at whatever level of detail the
interviewer collected. Any steps that cause problems are labeled with a
lightning bolt. When modeling the work of an individual, the

Understanding customers
intent is the key to design

From any one persons
point of view, all work is
a series of actions

Chapter 6 Work Models

Intent: Plug in

Intent: Handle emergencies

Trigger: Return to the office

Scan message list for important message—
Use sender, subject

Choose urgent message

I
Read message about unhappy user

I
Decide more info needed

Make phone call

Had to put off issue of
unhappy user

Intent: Get back to people easily

Leave phone message

File in phone folder

*
See list of messages

Choose message 9: subject indicates
university news relevant to department

I
Read message

Delete message

See message 10 automatically

Read message 10

F I G U R E 6 . 3 Sequence model for handling mail. This sequence model shows
how one user handled mail on one specific day. The intent is stated at the top left:
"Plug in." This conveys the nature of handling mail for this user: much of his com-
munication is through email, and when he left his office, he separated himself from
this communication. Returning and checking mail was a reconnection, a "plugging
in." This is implied by the trigger for starting this sequence, which indicates he does
it whenever he returns to the office. The arrows indicate the sequence of steps. When
he completed handling an emergency, he saved the message in a folder he uses as a
phone book. This action indicates an unrelated intent, keeping a contact list up-to-
date, which he handles opportunistically.

The sequence model 99

sequence model does not attempt to show pattern or repetition; we
identify those when we consolidate. Sequences may be studied at any
level of detail, from the high-level work to accomplish an overall task
to the detailed interaction steps with a particular user interface.

COLLECTING S E Q U E N C E S DURING
AN INTERVIEW

Collect sequences in an interview by watching people work or by get-
ting a detailed retrospective account of their work. The hardest thing
about seeing sequences is knowing what to pay attention to, and this
changes depending on the project focus.

S T E P S . If you are studying the work across the department, or if
you are learning about a new market, you'll collect sequences at a
fairly high level of detail. You want the actions people take, but not
necessarily broken down into each movement. So writing a letter
might look like: Get project information from project manager. Ex-
tract deliverables and delivery dates important to the customer. Write

S E Q U E N C E M O D E L D I S T I N C T I O N S

The intent that the sequence is intended to achieve. Secondary intents will be embedded
in this primary intents and they are named as they are identified,

A trigger causing the sequence of actions. It is the notification to the user to take action.
Triggers we have seen include the height of a stack of paper on a desk, the arrival of mail,
receiving a request, and seeing a misplaced line of text in a document.

Steps, the acrion or thought preceding an action. In an actual sequence model, a step rep-
resents what actually happened. As we step back from the actual steps and look for purpose
and strategy, the steps become more abstract. They move away from specific behaviors toward
fundamental purpose,

Order, loops, and branches indicated by arrows connecting the steps. These reveal strate-
gic and repetitive patterns of work. When the customer must make a decision about how to
proceed, we show that as a branching path. The order gives us an access road map to ensure
smooth transitions between tasks and allows us to see what steps could be combined or
skipped without serious violation to the users' conception of what is going on in their work.

Breakdowns or problems in doing the steps shown with a red lightning bolt (black in this
book). 3

100 Chapter 6 Work Models

Capture actions at the

level that matters for your

project

Customers' actions are

never purposeless

introductory paragraph describing current project state. Enter
dates. . . . This level of detail shows the overall structure of the work
and how it fits together without giving huge amounts of detail about
each task.

If you are designing a system or tool, study the tasks the tool sup-
ports in more detail. Look at what people do and also how they do it.

So writing a letter might look like: Scroll window to
find last letter written. Open it. Delete all content.
Save under new name. Enter name of recipient. Pull
Rolodex closer. . . . At this level of detail, we see the
structure of the task and the actions that make it
happen.

If you are designing the user interface, look at eye movement,
hand movement, hesitations, everything. So writing a letter might
look like: Use vertical scroll bar until icon for last letter written comes
in view. Double-click on item to open. Read recipient name and scan
first paragraph to make sure this is the right letter. Choose "Select All"
from Edit menu. . . . This level of detail shows how the user interacts
with the UI and reveals the issues for the UI to address.

In practice, the levels of detail blur somewhat, and it's safer to get
more detail rather than less. Each action has a purpose in the user's

mind. If it looks random to you, that's only because
you don't know what the purpose might be. In a
word processor, we repeatedly saw the user, with the
cursor at the end of the line, hit the right arrow, see
it move to the next line, then hit the left arrow to

move it back. Even this was not random; he was checking to see if he
was really at the end of the line or if there was extra white space
because, in that word processor, the white space would make the
line wrap.

Any glitch reveals a

thought step

H E S I T A T I O N S A N D E R R O R S . Notice when the customer
hesitates or makes errors. These are your clues to his thoughts. Inter-
vene and ask questions to find out what he is thinking about. Hesita-

tions and errors indicate places where the customers'
understanding of work is being contradicted by the
tools they are using. This is an opportunity for your
system to do better. If a task is largely a thinking
task, hesitations reveal decision points in the process.

The sequence model 101

Stop the customer and ask him to explain what he is trying to decide
at that moment. Try to get him to think aloud, to reveal more of the
issues.

T R I G G E R S . Every sequence has a trigger—the event that initiated
it. Triggers may be discrete events, such as the ringing of a telephone,
the arrival of an invoice, or a person arriving at the
door. Triggers may be based on time, like the first of
the month or the first thing in the morning. Triggers
may be less tangible, such as the pile in the in-box
getting too large. Whatever the trigger, if the work is
automated, it must have an analog in the new sys-
tem. The system needs a way to tell the user there's something to be
done. Otherwise, the user won't take action—for example, one mail
product simply gets slower the larger the in-box gets. This doesn't act
as a trigger for the user to clean it out; it just makes the product more
and more frustrating to use.

I N T E N T S . The intent defines why the work represented by a
sequence matters to the user at all. Every sequence has a primary
intent, which applies to the whole sequence. Then
there will be secondary intents, which drive the par-
ticular way the work is carried out. So our bill payer
has a secondary intent of not overdrawing her
account and of redefining who to pay and how
much to pay so that important bills are paid and the account is not
overdrawn. Intents are usually identified after the sequence is written,
when there is time to look it over and think about what lies behind
the customers actions.

Sequences capture the most basic information about work prac-
tice. Not only do they tell you how work is really done, they show
how it is structured and the intents people care
about. They present the detailed structure of work
that designers will need when it comes time to
structure the system. And they cut across the other
models, tying them together. Because sequences are
time-ordered, they show how different roles interact in different
places, using artifacts to support communication and actions to get
the work done.

Watch how automation
removes effective prompts
to action

Find the intents implied
by the actions

Sequence models reveal the
detailed structure of work

102 Chapter 6 Work Models

Artifacts capture traces of
peoples work practice

T H E A R T I F A C T MODEL

People create, use, and modify things in the course of doing work.
The things they use become artifactsy like archaeological findings.
They each have their own story to tell about the work:

In one organization, a first-level supervisor prints the
spreadsheet he uses to track projects weekly and gives it to his
manager. His manager makes check marks against each proj-
ect to indicate his approval and may make additional notes on
the side. Then he signs at the bottom and gives it back. In this
way the supervisor s personal tracking sheet becomes a sign-
off mechanism and a way for the manager to communicate
problems and issues. It suggests that sign-off and feedback are
part of the job; an automated project-tracking system could
build these features in.

Another woman builds a spreadsheet to calculate end-of-
year results. The calculations take 15 minutes to do—then she
spends the next 45 minutes making the spreadsheet look good
so she can hand it out at the next management review. When
a spreadsheet is given careful formatting, it s clear that the way
information is presented is an important consideration and
that spreadsheets are presentation tools as well as calculation
tools. The original spreadsheet tools only displayed text; they
were replaced with tools that could do fancy fonts and gave
full control over the look.

Another organization has the goal of raising the level of
cost consciousness among its people. They have a standard
form for making a request for a purchase. The form has a
place to describe the item and a place to justify why it's need-
ed but no place to show the cost. When a purchasing form
has no place to show cost, it suggests that cost is not a big
concern in the organization. An automated purchase order
request system could raise cost consciousness just by making
cost prominent on the screen.

Artifacts are the tangible things people create or use to help them
get their work done. When people use artifacts, they
build their way of working right into them. The arti-
facts show what people think about when they work
and how they think about it. An artifact reveals the
assumptions, concepts, strategy, and structure that

The artifact model 103

guide the people who work with it. Artifacts might be to-do lists,
forms, documents, spreadsheets, or physical objects under construction
(circuit boards, cars, airplanes). Artifacts may be bought, designed
intentionally, or created on the fly. They are manipulated in the
sequence models and passed between people in the flow model.

In their structure—how they are arranged into parts and the rela-
tionship between the parts—artifacts show the conceptual distinctions
of the work. When displays showing the status of a
network are separated from displays of trouble
alerts, this indicates that tracking ongoing status is
different work from responding to alerts. When
notes are written on a presentation handout, not
where there is white space to write them on, but
jammed in next to the text they refer to, this indicates that the close
spatial relationship of text and note matters to the writer. When the
list of things that a person would like to get is separated from the
shopping list, this indicates that a clear distinction exists in the per-
son's mind between the nice-to-have-someday items and the I-will-
buy-this-today items. An automated shopper's planner had better pro-
vide a way to track long-term possible purchases separately from
today's shopping list (Johnson et al. 1988).

An artifact model (Figure 6.4) is a drawing or photocopy of the
artifact, complete with any handwritten notes. The model extends the
information on the artifact to show structure, strategy, and intent.
Highlight structure with lines and labels marking the different parts.
Annotate the location of the parts showing how they are placed to
give them prominence or support the artifact's usage. And write
intents directly on the part of the artifact that supports the intent.
Lightning bolts show where the artifact interferes with the work,
whether because the defined structure does not match the work,
because needed information is missing, or because it is too cumber-
some to use.

C O L L E C T I N G A R T I F A C T S D U R I N G

A N I N T E R V I E W

Artifact models always require interpretation to reveal their intent and
usage. You can do this best with the customer during the interview.
Look for and inquire into:

Artifacts make customers'
conceptual distinctions
concrete

104 Chapter 6 Work Models

Past (seldom accessed)
<

Future {quick access)
►

Business cards
(storage for later)

Jn

.1
3 ,

cJ_U

rr
1 Meetings '

Appointments
it Reminders ^ r -
StnkV " " "

Never used

n •Scheduled events

Unscheduled but
associated with the day

Reminders
(storage with
quick access)

i. -Rubber hand

F I G U R E 6 . 4 Artifact model. This physical model shows the structure of an arti-
fact, in this case a personal calendar. The usage of this calendar reveals that it is not
only about managing time; it is organizing an entire life. The rubber band makes the
distinction between past and future. The calendar is acting as a storage place for
reminders and to-do lists as well as a calendar. When the calendar gets too fat, this is
a convenient trigger for dealing with the to-do lists. The usage of the day view shows
additional distinctions: meetings are listed from the top of the day down, but
reminders of a more general nature are writ ten from the bo t tom going up.
Reminders are attached to a day; they are not kept in the provided "notes" area, so it
is not used.

Structure reveals how the

work is organized

S T R U C T U R E . All artifacts have structure, even the most infor-
mal. People naturally create a structure to represent their thought,

even when they start from a blank page. If they
didn't create the artifact on the fly, they may start
from a given structure, either because it came as part
of an artifact they bought or because they designed
it themselves before starting the actual work. In this

case, the structure inherent in the work wars with the given structure,
and the artifact will show every place there is a mismatch. So the notes
space on a daily calendar may be used for notes, but it may be left
blank or used as a rolling to-do list. If everyone uses it like a to-do list,
then organizing the day and scheduling are intimately intertwined.

Look to see how the artifact is structured. How does the presenta-
tion—layout, fonts, formatting, and white space—reveal structure?
Assume every grouping of information corresponds to a conceptual
distinction in the customers work. Can you and the user figure out
what it is? Can you make these distinctions real in your system?

The artifact model 105

A R T I F A C T M O D E L D I S T I N C T I O N S

Information presented by the object, such as the content of a form (e.g., a doctors name,
nurse's name» patients name, and diagnosis).

Parts of the object, which are distinct in usage, such as page, kind of page (table of con-
tent vs. title page), headline, or figure in a diagram.

Structure of the parts explicitly in the object as given and implicitly in its usage: the divi-
sion of a form into a section for the doctors use and a section for the nurse's, the grouping of
cells in a spreadsheet to represent part of the data for a single purpose, or the way some people
use the top of a day within a calendar for meetings and the bottom for reminders.

Annotations, which indicate the informal usage of the object beyond that allowed for by
its explicit structure: Post-its stuck to a document, highlighting, and notes written on the side
of a report.

Presentation of the object: color, shape, layout, font, white space, emphasis, and how they
support usage.

Additional conceptual distinctions that are reflected in an artifact and that matter in its cre-
ation and use: past, current, and future in using a calendar; structure and content that repeats
in a report from month to month; x-height and caps height in page layout.

Usage of the artifact—when created, how used, how people move through the parts of the
artifact.

Breakdowns or problems in using the artifact, represented as a red lightning bolt (black in
this book). U

I N F O R M A T I O N C O N T E N T . The content of an artifact is the
information, specific to the work, that the artifact carries. The content
of an artifact tells the story of a part of the work—
how the content was put in, how it was used, and
who used it. The content fits into the structure of the
artifact—or it doesn't, in which case customers mod-
ify the defined structure. Seeing how the content is
manipulated reveals the artifact s usage—how it supports the work and
also the detailed interaction with the artifact in the course of working.
So each meeting on a personal calendar suggests the story of the work
task that the meeting supports, but it also suggests the detailed story of
how the user interacted with the calendar to put the meeting on it.

Look for the information the artifact carries and how it is used.
Use the artifact to drive a retrospective account, as we discussed when
describing interview principles in Chapter 3. Why is this artifact an

Content is the trail left by

real events

106 Chapter 6 Work Models

Annotations reveal usage
and communication

Presentation directs the eye

and reveals importance

appropriate carrier for this information? Who will see it and when?
What would happen if the artifact didn't exist? Can you make the
needed information available more simply in your system?

INFORMAL A N N O T A T I O N S . Informal notes and annotations are
a gold mine of information. They tell you about the actual usage of the

artifact. Did the defined structure get used? Was it
extended? Was the artifact used to carry additional
information by writing notes on it? Why was it used?
What made the artifact the convenient carrier for the
message? Can you put other channels in place to

make this unnecessary? Can you see how the artifact didn't match the
work, and can you see how to make your system fit the work better?

P R E S E N T A T I O N . Content and structure are revealed in the arti-
facts presentation. Look at formatting, the layout of parts on the

page, and the use of white space. How does the arti-
fact attract attention to some parts of the content
and downplay others? The presentation supports the
intent of the work if well designed and gets in the
way if not. If the artifact is redesigned or put online,

how should your system present it for easy interpretation in the same
kind of way?

Walk through artifacts

with the customer to see

what they mean

I N Q U I R I N G INTO A N A R T I F A C T

There are two levels of inquiry into artifacts. The first is to see how an
artifact supports the customers intent. The presentation, content, and

structure are all clues to what matters in the work. So
notes scribbled on a materials-tracking card telling the
technician how to handle the material show that direct
communication between user and handler is impor-
tant. Any system that interrupted the communication
(such as an automated tracking system) would cause

problems in the work. To be successful, such a system would have to pro-
vide another way to accomplish the same intent. At this level of inquiry,
we look at structure and usage to derive intent, to show why the artifact
matters and what any automated system needs to account for. (See
Muller et al. [1995] for an example of such an inquiry.)

The cultural model 107

If you think that the artifact might be supported or automated,
then a detailed inquiry into the interaction with the artifact provides
clues in how to structure the system. Things that
cluster in the artifact are conceptual groups that
should be kept together. The natural pattern of inter-
action with the artifact is a good guide to appropriate
interaction with the system. So the notes on the
materials-tracking card indicate that, if we want to automate materials
tracking, we have to support informal communication between user
and handler. This communication may happen at any time after the
materials are received, so a single note that can only be entered when
the materials are received wont do. Since the handwritten note is its
own record, and having the record matters, the automated system
needs to keep instructions related to the material available over time.

Artifacts are the concrete trail left by doing work. They capture
multiple stories of how work happened, making it possible to walk
through a retrospective account of those events. As a physical object,
an artifact makes the way customers think about their work tangible,
so you can see and inquire into it. But artifacts do not speak on their
own; collect examples that have been used and interpret them with
the customer during the interview to reveal their meaning.

T H E C U L T U R A L MODEL

Work takes place in a culture, which defines expectations, desires,
policies, values, and the whole approach people take to their work:

A vendor creates a product that helps development teams
control their development process. The product is well
designed and well made, but fails in its target market of
UNIX shops. UNIX shops pride themselves in getting code
out without needing a formal process.

Another vendor makes an instrument so straightforward
that unskilled operators can run it with ease. Their customer
base won't buy it because they consider themselves highly
skilled professionals who can run complicated systems.

Another company gives their scientists software that sim-
plifies the reporting of experimental lab results. The scientists

Bring back copies of used
artifacts

108 Chapter 6 Work Models

Successful systems fit with

their customers' culture

reject the system because they consider proper reporting of
results to be part of the job of a scientist and don't want it
simplified.

In each of these cases, there was nothing wrong with the system
delivered. It was designed and built well and solved a real problem.

There was no technical roadblock to its use at all. In
each case, what prevented the system's success was
the culture of its proposed users. If a system con-
flicts with its customers5 self-image, or doesn't ac-
count for the constraints they are under, or under-

cuts the values important to them, it will not succeed.
The cultural context is to us like water to a fish—pervasive and

inescapable, yet invisible and intangible. Cultural context is the mind-
set that people operate within and that plays a part

Culture is as invisible as

water to a fish

The cultural model makes

influences concrete

in everything they do. Issues of cultural context are
hard to see because they are not concrete and they
are not technical. They are generally not represented
in an artifact, written on a wall, or observable in a

single action. Instead they are revealed in the language people use to
talk about their own job or their relationships with other groups.
They are implied by recurring patterns of behavior, nonverbal com-
munications, and attitudes. They are suggested by how people deco-
rate and the posters they put on their walls.

The cultural context includes the formal and informal policy of
an organization, the business climate created by competitors and by

the nature of the business, government require-
ments, the decor of the site, the self-image of the
people doing the work, and the feelings and fears
created by the people or groups in the organization.
Culture influences work by altering the choices peo-

ple make. Because they don't want to have to deal with a certain
group, or because they consider themselves professionals, or because
they are worried about what their competitors are doing, people
change the way they do their work. Design teams that understand
these constraints can build their systems to account for them.

The cultural model 109

C U L T U R A L M O D E L D I S T I N C T I O N S

Influencers who affect or constrain work, shown as bubbles. These may be individuals or
formal groups in the organization. They may be a collection of people who are not a formal
group but are thought of together ("management"). They may be external influencers such as
customers (and possibly multiple customer organizations), government regulatory bodies, stan-
dards groups, or competitors. They may represent the overall culture created by the organiza-
tion or shared by the people doing the work.

The extent oi the effect on the work shown by the amount the bubbles overlap. It suggests
whether essentially everything about the work is affected by this influence or whether the
influence is more partial. So the Food and Drug Administration influences the work of food
and drug companies through its reporting and testing requirements, but this influence does
not constrain everything about developing the food or drug product. On the other hand,
everything an assembly line worker does is affected by the requirements of the assembly
process.

Influence on the work. Arrows represent the direction of influence (who is primarily affect-
ing whom) and how pervasive it is (whether this is an influence of one individual or &

110 Chapter 6 Work Models

group on another or whether it is more pervasive across an organization). We also represent
pushback; in real situations it is rare that influence is all in one direction.

Breakdowns or problems interfering in the work, represented as a red lightning bolt (black
in this book). Because all influences restrict work in some way, we only show breakdowns on
the cultural model when they are especially harmful.

The following kinds of influence tend to be relevant to design:

Standards and policy that define and constrain how work is done or what can be used or
bought, or the lack of such standards as a policy. So many companies define a standard PC
configuration that they will support: "Use this configuration or youVe on your own." Other
companies live with standard procedures defined by themselves or imposed on them by the
government or by customers: "Prove your process is compliant or we'll use another vendor."

Power, both formal in the organizational structure and informal through people's net-
works, expertise, and history. Power shows up in who has the right to decide who will do what
in their work and the extent of autonomy a person can have. So one boss sets up his secretary's
computer environment, limiting her ability to recover when anything breaks down: *T11 fix
your machine in the way / t h i n k is important/ ' In another organization, reimbursement for
expenses is controlled by administration, which enforces the requirements for filling out paper-
work and can choose to allow exceptions: "Jump through my hoops and I'll let you have your
money."

The values of a company or team: what they stand for that produces a set of expectations
about how people will interact and work. So one organization has the expectation that a proj-
ect will be completed the same way as it was the last time, resulting in a feeling that innovation
is unwelcome: "II it's a different plan, be prepared to justify it."

A groups own sense of identity, the way in which what they do is affected by how they
think of themselves. So one UNIX shop held that they did not need to do formal up-front
analysis and design because uwe don't do process."

People's emotions about what they do> including fear about being laid off or getting in
trouble for raising issues, or peoples pride in what they do. So knowing that "email can be read
by anyone, including management" led people in one organization to discontinue its use.

The idiosyncratic style, values, and preferences of an individual or team, creating a work
environment that circumscribes others. So one boss will not use the computer, forcing his sec-
retary to handle all his email communication: "Use the computer for me because I won't." Or
a team can't work past 4:30 because everyone has outside activities that pull them away: uWe
are committed to home activities; schedule around them." J

The cultural model 111

RECOGNIZING THE I N F L U E N C E
OF CULTURE

Culture is invisible, but can be deduced from things you see and hear.

T O N E . When you walk in the door, what is the tone of the place?
Industrial and sterile? Carefully designed and trendy? Formal and ele-
gant? Messy and haphazard? When the customers
design their workplace for elegance, they are unlike-
ly to accept a system that looks haphazard. When
they spend little time designing their workplace, just
the bare minimum so that they can work, they are
unlikely to accept a system that is overdesigned,
which looks like time and money was wasted on elegance.

A valuable system helps
people be who they
want to be

P O L I C I E S . What are the policies people follow, and how are they
recorded? Are there policy manuals, and are they used? Do people
wanting guidance on doing their work routinely
check them? Or is the operational policy—the poli
cy that affects work on a day-to-day basis—really
passed by word of mouth? If so, how much is based
on real directives, and how much is folklore? Is poli-
cy generated by fear of a regulatory agency, of another organization, or
of a manager? You can hear policy in the words people use: "We won't
buy anything but UL-rated power supplies. They had a non-UL sup-
ply catch fire over in building 10 a while back." If UL rating matters,
you can highlight UL-rated equipment in the catalog you develop.
"Better get these procedures documented properly. One of our com-
petitors was cited for out-of-date documentation, and their stock
dropped three points." If written records are an important part of the
work, you can implement systems that maintain them. The policies
that people care about point to problems you can solve.

O R G A N I Z A T I O N A L I N F L U E N C E . Are there organizations,
individuals, or job functions that keep showing up, either as trouble-
some or helpful? What are the organizations or job functions that
always seem to get in the way? Who are the people who constantly
show up as the ones who can solve the problem? Listen to how people
talk about others: "Don't call maintenance about this. They'll take it

A valuable system makes
conforming to policy easy

112 Chapter 6 Work Models

A valuable system reduces
friction and irritation
in the workplace

away to check it out and you wont see it again for a week." Can you
change the design of your system so that maintenance doesn't have to

take the machine away to run diagnostics? "Oh, I
cant give this report to Mike looking like this. He
runs this whole place—I'll put it in my word proces-
sor and make it look really good." If the reports that
your product creates are given to management, you
can make them high-quality presentations.

The cultural model speaks
the words people think
but dont say

An organizations culture
is not reflected in its
organization chart

M A K I N G C U L T U R E T A N G I B L E

The cultural model (Figures 6.5 and 6.6) provides a tangible repre-
sentation for these intangible forces. In a cultural model we represent

influencers (people, organizations, and groups) in
the customer's culture, showing how they influence
each other. Influencers are shown as large bubbles.
Because culture is felt as a weight or pressure influ-
encing actions, the bubbles sit on one another,
showing how one organization forces another to

take or not take actions. We represent influences as arrows piercing
the bubbles and label the arrows to represent the type of influence.
Influences are labeled with language representing the experience of
the people doing the work, so the influence from an internal help
organization might read, "We are unreliable and will wipe your hard
drive on a whim." No one in that help organization would ever actu-
ally say those words, of course, but the people who use their services
operate as though they were saying exactly that. Using direct lan-
guage on the model makes the culture it represents stand out. Where
an influence stands out as being particularly harmful and counterpro-
ductive, we mark it with a lightning bolt, our universal symbol for
problems or breakdowns.

Cultural models do not map to organization charts. They show
how power is experienced by people, rather than the formal power of

the organization. So it's unusual to see the whole
management chain represented on a cultural model.
Individual managers will appear when they are part
of the work, as when a manager makes his secretary
interact with the computer for him. There's often a
bubble to represent the organization's culture, with

The cultural model 113

Marketing

Our new features are top priority s

' If I say do Xf you figure
out what that means

Competitors

We have 50 new features;
catch up

U9
(Developer)

You aren't our primary user;*
we'll fix bugs for you in

\ our own time

* Our technology is standard/
use it even if it doesn 't work

Base technology group

^Our bug reports are top priority

Customer support

F I G U R E 6 . S The culture of a product development organization. This is a typi-
cal cultural model in a product development organization. In the center we see the
interviewee, U9. Since cultural models are initially built as the result of an interview
with one person, they represent the point of view of that one person. U9 is in the
development organization, and the model shows two major constraints on them.
The marketing organization constrains them through ill-specified product require-
ments. Competitors constrain them by creating a climate in which keeping up with
the number of features is the primary goal. The basic appearance of this model—the
interviewee surrounded by influencers—is very typical.

influences like "We are totally customer-focused" or "Spending money

is not a problem." In adversarial situations, "management" may appear

to represent how "they" do things to "us"—"We think you salesmen

are children who need to be watched every moment" might be an

example. Individual managers appear as managers only when they are

charismatic figures who define the organization's culture. In this case,

114 Chapter 6 Work Models

Standards make my life easier

Use whatever new
We are a no-risk interface

Support whatever I choose to buy
net HW we create \{PC support analyst) \ ^ \ \ \ i

' v x x We are your one-stop shop

: y
External \ We help you sell socks

technology
vendors ^ _ — N , lA/ ^ , ,

We go out of our way for you

F I G U R E 6 . 6 The culture of a customer-centered organization. This cultural
model is typical when there is a definite corporate culture to account for. This cultur-
al model represents a department store that has made customer satisfaction its first
priority. Unlike many places that espouse that goal, this company has really done
it—so much so that people throughout the organization are conditioned to think
who their customer is and how to give them the best service. Paired with this focus
on the customer is an equally pervasive understanding of the business—so much so
that "We sell socks" is a watchword within the company. We show the pervasive
company culture as an umbrella over everything, with individual influences going
back and forth between the bubbles. The lightning bolt indicates a place where two
values conflict: being customer-centered leads the store to avoid setting standards for
computer configurations, but such standards would make the PC support analyst's
life easier.

The physical model 115

their power is experienced as direct and personal. McDonald's fran-
chise owners used to tell about how Ray Kroc, then CEO of McDon-
ald's and a fanatic about cleanliness, canceled a franchise because he
found one fly in its kitchen (Boas and Chain 1977). Everyone lived in
fear that he would show up in their kitchen next. Ray Kroc would
appear on a cultural model.

T H E P H Y S I C A L MODEL

Work happens in a physical environment that either supports and
enables the work or gets in the way:

One company creates a page design product in which the
look on-screen doesn't quite match that of paper. They think
it is close enough because they expect their users will print
draft versions and use the paper output for the final draft.
They don't know that most of their users don t have printers
by their desks, or even close by. So users spend time running
back and forth to the printer and copying good drawing ele-
ments from one document to the next.

Another company gives their sales force portable comput-
ers to do presentations. They don't know that salespeople are
only given a few minutes at a site. The salespeople don't have
time to bring up a computer, and they depend on leaving
materials behind with their customers. The portable comput-
er doesn't fit either need.

A utility company gives their electricians documentation
in a three-ring binder. Only later do they discover the electri-
cians are trying to balance this awkward binder on a cherry
picker in all types of weather. They redesign the documenta-
tion as a small, spiral-bound flip book with laminated pages
and a clip so it can be hung from a belt.

Any product or system must live with the constraints of the physi-
cal environment as it exists. If it ignores those constraints, it creates
problems for its users. In each of the above exam-
ples, a system created problems for its users because
it assumed things about the workplace that were not
true. Studying the users' workplace ensures that the
system accounts for the physical environment.

The physical model reveals
design constraints

116 Chapter 6 Work Models

The physical environment constrains what people can do, but
within those constraints people do have some control over their envi-

ronment. Studying the workplace offers important

Model both site and

workplace

People reorganize their

environment to reflect the

work they do

clues to the way people structure and think about
work. People restructure their workplace to support
doing work in the way they prefer, to the extent they
can. Because they structure their environment to be

convenient, the structures they create mirror their thought. The struc-
tures show what people group together into conceptual units and
coherent tasks. An office worker sets up places in her office to keep
her work organized. The chair receives urgent messages from cowork-
ers; the space next to the computer is kept clear so that when she
starts a task, she has a place to lay it out; the in-box is the "guilt
pile"—things she feels that she ought to deal with, when she has time.
The places she creates mirror the way she thinks about her work:
urgent, current, guilt pile. They make work distinctions concrete. A
system that makes these distinctions real will fit with the work easily.
The workplace shows us issues in doing work; from the elaborate sys-
tem of piles that people create, we can deduce that tracking multiple
little tasks is a problem, and people might benefit from better ways to
track them.

The physical environment is the world people live in: the rooms,
cars, buildings, and highways they move about and work in; how

each of these spaces is laid out so that it supports
work; and how they use these spaces in the process
of working. It includes how they move about, how
the space supports or hinders communication, and
the location of the tools people use (hardware, soft-
ware, networks, machines) to do work. The physi-

cal environment affects how work is done at every scale: the multiple
sites and their relationships to each other, the structure of a single
site, and an individual's workplace. The work site may be structured
as an open "bull pen" with supervisors' offices around the outside. It
may consist of many individual cubicles dividing up a large room. A
persons workplace may be an entire building or buildings, if they are
maintaining equipment. It may be a car or airplane if they work on
the road. Within a work site there are places to do work, which may
be offices, labs, workbenches, or workstations. Workstations may be
dedicated to one person or shared.

The physical model 117

P H Y S I C A L M O D E L D I S T I N C T I O N S

The places in which work occurs: rooms, workstations, offices, and coffee stations. The
model shows whether the space is small or large, a primary or secondary workplace, private or
open, cluttered, or empty space available for changing work activities.

The physical structures that limit and define the space: sites, walls, basements, desks, file
cabinets, and other large objects.

The usage and movement within the space—how people move about in it and move things
about in it in the course of accomplishing their work.

The hardware* software, communication lines, and other tools (calculator, Rolodex, irvbasket,
measuring tools, Post-its, printer, fax) that are present in the space and support the work or
seem related. We show network connections, not to model the network itself, but to emphasize
who is connected to whom and therefore what communication among people we can automate.

The artifacts that people create, modify, and pass around in support of the work—folders,
spreadsheets, to-do lists, bills, ID cards, approvals, piles of stuff The physical model shows the
artifact and its location, not the detailed structure and usage of the artifact.

The layout of the tools, artifacts, movable furniture, and walls in relationship to each
other to support specific work strategies.

Breakdowns or problems showing how the physical environment interferes in the work,
represented as a red lightning bolt (black in this book). J

S E E I N G T H E I M P A C T OF T H E P H Y S I C A L
E N V I R O N M E N T

The physical environment is easy to see—it's all right there. It's harder
to tell what matters. What will affect the design problem, and what
will not? Here are some things to look for.

O R G A N I Z A T I O N O F S P A C E . Are there stations, and how do
they relate to the work? Are stations grouped to follow the flow of
work to make work efficient, or are similar stations
placed together to make management efficient? Are
the people who made the decision conscious of the
trade-off? This will indicate what they care most
about and therefore what the most important prob-
lems for you to solve are.

Planned space
reflects organizational
assumptions

D I V I S I O N O F S P A C E . Where are the walls, and how do they
break up the work? Do they follow the structure of the work, or do

118 Chapter 6 Work Models

Look at how people ignore

walls or create walls that

arent there

they interfere with it? If they interfere, how do people overcome them?
Do they run back and forth a lot? Do they shout? (During one inter-

view, the user directed a question at the wall, and the
wall answered. It was so thin he could carry on a
conversation with his colleague on the other side.)
Every communication breakdown creates an oppor-
tunity for you to ameliorate it: Who needs to com-
municate? How and when? Can you obviate the

need by providing information where it s required, or can you make it
easier?

Find barriers

to community and

communication

G R O U P I N G O F P E O P L E . HOW are people grouped into the
spaces? By function or by project? Does each person have their own

separate office area, or do they mix and share spaces?
Often specialists sit with other specialists, not with
the project they are assigned to. Creating a sense of
belonging to the project team becomes difficult.
Conversely, developers who are seated with their
internal clients tend to identify with them. They

tend to adopt their perspective against that of the development orga-
nization. What can you do to make the whole interrelated set of infor-
mation systems apparent to all developers, so they are continually
reminded of the effect their short-term fixes will have on the whole?

Placement of objects and

piles makes the work

efficient

O R G A N I Z A T I O N OF W O R K P L A C E S . How are the individual
stations, offices, or work areas organized? How do they support the

work? What is kept out (immediately visible), ready to
hand (accessible without moving), and available (in a
drawer or across the office)? What does this say about
what's most important to the work? Things kept
together tend to be used together. What does this say
about the structure of a task? Can you see what makes

up a whole task in what is kept together for easy access? Can you design
your system so that the most important function is available where
needed and so that whole tasks are coherent in the system?

M O V E M E N T . When do people move? Why do they leave one place
and go to another? What triggers them to do so? Is this intrinsic to the
work, as when a maintenance person goes to look at a machine? Does it

The physical model 119

provide an opportunity for informal discussion and problem solving?
Do the customers see it as a problem, or are they like system support
people, who generally enjoy getting out of their
offices? Understanding why the movement happens
will help you decide whether it makes more sense to
support it better or eliminate it.

Movement reveals human
preference and work needs

The physical model is
a caricature of the
workplace, not
a floor plan

S H O W I N G W H A T M A T T E R S IN T H E
P H Y S I C A L E N V I R O N M E N T

A physical model (Figures 6.7 and 6.8) is a drawing of those aspects of
the workplace that are related to the project focus. The physical model
shows how the physical environment affects the work.
It is annotated to show how the space is used and to
show strategies, intents, and cultural values that are
revealed by the way space is used. A good physical
model evokes the experience of the workplace in the
same way as a caricature. Aspects of the environment
are only represented if they matter to the work; for
example, "basement" might mean "far away, uncomfortable, and incon-
venient to get to/ ' If the worker must nonetheless go there or worry
about what happens there, we represent it in the model. Wherever the
physical environment interferes with the customers work—things are
too far away, or too cramped, or the right tools aren't where they are
needed—we show it with a lightning bolt.

The physical model shows how people respond to the environ-
ment by restructuring it. Do people accept the workplace as it is, or
do they work around it? If the environment consists of doorless cubi-
cles, do they put things in front of the door to gain a measure of pri-
vacy? How else does the work as it is experienced mismatch work as
the environment wants it to be? What do people do about it?

A physical model is not a floor plan for the work site. Nor is it an
inventory of the computer room. Either a floor plan or an inventory
can be collected easily, without resorting to contextual techniques. A
physical model does not show extraneous detail unrelated to the proj-
ect focus—potted plants, kids' toys, and family pictures are usually
not relevant and can be omitted when you're designing a system. If
you were designing the work environment itself, you might have to
take them into account.

Chapter 6 Work Models

(^LJse r^ ^ J J s e r ^) (^JJser^) (^JJser^) (^JJser^)

1000

D

D
D

D

D

D

D
□ □

D

D D a n

D D □

(^uT) D D D D D

Basement

Large VAX

User files

| _ ? J Central PO

□

D
D D

D

D

D

□ Limited disk R ^ d ~
LJ u space „

D °
F I G U R E 6 . 7 Physical model for a university environment. This university has
set up its workstations so that anybody can use any workstation. The small boxes
represent the workstations—over 1000 distributed all around the campus. To indi-
cate their independent nature, we show them as standing alone and show the users
separated from them, to indicate any user can access any workstation. " U l " means
"user 1 " and indicates the office of the user we talked to in a central building, with
the central VAX machines in its basement. All user files are stored on the VAX. The
"central P O " is a piece of software that routes mail between users. We have shown
the routing of one message because we were designing a communications product.
This work model shows the value of choosing a representation that is expressive of
the data—in this case, that there are many workstations spread out over the campus
according to no particular plan.

T H E FIVE F A C E S OF WORK

Each of the above work models presents a different perspective on
the work. These perspectives interlock: a person plays roles; a role has
responsibilities, undertakes tasks, and exchanges artifacts with other
people to discharge these responsibilities. The sequence models show
how these tasks are accomplished in detail and how artifacts are used in
accomplishing them. The responsibilities and manner of accomplishing

The five faces of work 121

Communications center

Manages
interruptions

Reports,
notes, and
messages

to and from
coworkers

F I G U R E 6 . 8 Physical model for an office. This physical model shows the work-
place of one user. The model represents a cubicle and shows how she has structured
her environment to help her get work done. The placement of her IBM Selectric in
the doorway the in-box next to the door, and the shelf used as a drop-off place all
suggest a strategy to minimize interruptions caused by working in an open cubicle.
The phone, Rolodex, and calendar are all grouped together, suggesting that these
tools work together to support communicating and coordinating with others. And
the open space around her workstation suggests an intent to keep this area clear so
she can lay out her next task. The team has annotated the model to reveal these dis-
tinctions and to show breakdowns, such as the printer being too far.

Too far

them are driven by organizational context and culture as shown on
the cultural model. The work represented by the sequences is done
within the work environment described by the physical model. Step-
ping back and looking at the models together reveals all the different

122 Chapter 6 Work Models

aspects of work and how they relate to each other. It reveals how the
whole work of one person hangs together.

Seeing how customers work drives design. A design team needs to
know what they should make—what work might be supported, what

the big problems are, what the customers care

Work models show
designers what to
account for

What you see in the work
determines what you will
think to build

about. They need to know what they must account
for in their design: the roles and how they interact,
physical and cultural influences and constraints.
They need to know how to structure their design:
the strategies people use to get their work done, the

way they break up and think about their work conceptually By orga-
nizing and presenting customer work clearly, work models make it
possible to answer these design questions. They provide an integrated
view of the customer's work practice and also show the details of work
structure that guide the fine points of design.

The individual work models as described above represent the work
of each customer that a team interviewed independently. In Part 3,

we'll see how to consolidate models so that instead of
showing each customer independently, they show the
common structure and pattern of work across all the
customers a system needs to support: a whole mar-
ket, a department, or multiple departments. With
consolidated models the design team has a single

statement of the work they need to address, rather than trying to sup-
port each individual separately. We do this by first observing, inquiring
into, and representing the work of specific individuals. Then we con-
solidate the models of each type. We bring all individual flow models
together into one consolidated flow model to reveal the common roles
and their interaction. We consolidate all the cultural models, all the
physical models of whole sites, and all the physical models of individ-
ual workplaces. We consolidate all the sequences representing similar
tasks and all the artifacts achieving the same intent.

These consolidated models make the underlying patterns of work
across customers explicit. At the same time, they capture the variation
between customers by showing any unique structure or details put
into practice by each customer site. The design team can then decide
what aspects of work they want to support. They can take a good idea
for approaching the work implemented by one customer site and
build it into the system to make it available to all. They can streamline

The five faces of work 123

the work, removing extra steps and taking advantage of technological
possibilities. From this redesigned work practice, they can design a
system that supports the new work practice and drives the design of
the user interface and system implementation. The rest of this book
discusses these steps.

This page intentionally left blank

The Interpretation
Session

"I just talked to a potential customer at COMDEX, and
he said he wanted that feature we talked about—"

"But I just went along on a service call and that guy hated
it. We should do this other thing—"

"No, I talked to one of our really big clients and they
said—"

These are the voices of people who have talked to their customers.
Each one learned something valid from one customer. Now they

are faced with the difficulty of communicating what they learned, rec-
onciling the different messages from different people, and coming to
agreement on what the customers really need. They have feedback (of
a sort) from customers; they do not have a shared understanding of
what it means or what they should do about it.

It s not enough for the members of a design team to understand the
customers they visited and talked to individually. If a team is to agree on
what to deliver, all members of the team need to
understand every customer as though they had been
there. They need to build an understanding of all
their customers and how they work that is shared by
the whole team. A team develops this understanding
through conversation and mutual inquiry into the
meaning of the facts about their customers' work. In this way, the dif-
ferent members of the design team can learn each other's perspective,
the unique focus each person brings to the problem. They can probe
each other s understanding, learning from and teaching each other what
to see. When one thinks another is wrong, they can look at concrete

Interpretation sessions let

every team member

experience all interviews

Chapter 7 The Interpretation Session

instances to see how their different perspectives reveal different issues in
customer data.

BUILDING A SHARED

UNDERSTANDING

We allow for this mutual discovery through the interpretation session.
In an interpretation session, an interviewer walks through a single
interview for the benefit of the team. The rest of the team listens, asks
questions, draws work models, and records issues, interpretations, and
design ideas based on this interview. In their discussions of what to
model and what to record, the team wrestles with the data and what it
means, learns how each team member views the data, and develops a
shared understanding of that customer. The interpretation session is
an efficient way to achieve several desirable benefits:

Better data: Because everyone asks questions of the interviewer,
the interviewer remembers more than he would on his own. The ques-
tioning prompts him to recall details he didn't know he remembered.

Written record of customer insights: The interpretation session
records the conversation while it occurs, in the appropriate form to
drive design. By the end of the interpretation session, the work of this
customer has been characterized in work models, and the team's
insights, design ideas, and questions have been captured online. No
one needs to take additional time to write up or analyze this customer
interview. People who weren't present can read the models and the
notes to catch up on what was learned.

Effective cross-functional cooperation: The interpretation ses-
sion is a forum in which diverse job functions can cooperate, whether
they be customers, marketing, engineering, documentation, UI, test,
or any other group relevant to delivering the system. The interpreta-
tion session provides a clear task and a clear set of roles for everyone in
the meeting to perform. It focuses the meeting not on the participants
and their differences but on the data and on extracting meaning from
the data. Instead of arguing with each other, participants argue over
whether a model accurately reflects the customer's work. Instead of
arguing about people's opinions, the only topic for discussion is
whether an interpretation can be justified based on the data. This

Building a shared understanding

makes a safe environment for a new team to learn to work together.
Each person and each job function makes a contribution to under-
standing the customer. Learning to recognize and value the unique
contribution of each person as an individual and each group in the
organization happens almost by accident.

Multiple perspectives on the problem: Each team member
brings their own focus to the problem, which is derived from their
personal history, their current job function, and their understanding
of the project focus. A cross-functional design team will always see
more in an interview than any one person would alone. For this rea-
son, the interviewer does not filter the information at all; something
she dismissed as irrelevant will be picked up by someone else to reveal
an insight of great importance. Any kind of predigested presentation
of the interview—a report or presentation, for example—would limit
the information that would be extracted from an interview to the
point of view of one person.

Development of a shared perspective: The open discussion
between team members enables them to learn and take on each other's
perspective. By hearing everyone's questions and insights on the data,
every team member expands their own focus to include the concerns
of others. The questions that people raise suggest new lines of inquiry
and new directions to take the inquiry. The team moves toward a
common focus on the problem, which accounts for the aspects of
work that matter for the problem and all the particular issues of the
team. Team members learn the new focus by participating in the ses-
sion; there is no need for an elaborate process to redefine the focus.

True involvement in the data: It is hard to process data—to
think through what it means and might imply for design—when it is
just presented. A report or a talk delivers information to a passive
reader or listener. It's easy for attention to wander; even dedicated lis-
teners must do something to make the information their own,
whether by taking notes, writing ideas, or asking questions. The inter-
pretation session reveals the data interactively, through questioning
and discussion. Team members immediately represent it in work
models, so they must internalize it to write the models, and everyone
else must internalize it to check them. And since everyone has a job,
it's hard for attention to wander.

Better use of time: Without an interpretation session, all the team
members would still have to talk to the interviewer to ask questions

128 Chapter 7 The Interpretation Session

Interpretation sessions
enable sharing that has to
happen anyway

about the interview and understand the implications. They would still
have to talk to each other to learn what others on the team saw in the

data. The insights into the work would still have to
be written down. Without the interpretation ses-
sion, all this would happen in informal, one-on-one
discussions in hallways and offices. With the inter-
pretation session, it can happen once, with the
whole team together.

THE STRUCTURE OF AN

INTERPRETATION SESSION

Doing creative work in ongoing, face-to-face sessions as a team is hard.
As we've discussed, the industry does not generally provide good mod-
els for face-to-face cooperation on the same project; it's easier and more
common to split projects up into parts small enough for individuals to
do independently. But there's no way to leverage multiple perspectives
if everyone works independently. It's hard to get the same sense of
common direction. And there's no good way to build on different peo-
ple's skills; everyone has to understand the work practice, the technolo-
gy, the market, the user interface, and all the other influences on sys-
tem design in order to produce their part. Doing the design together
provides multiple perspectives and leverages people's different skills,
but then the team really has to learn to work together. The interpreta-
tion session provides an easy way for a team to get started.

Plan meetings and
participants to make the
process work

T E A M M A K E U P

It's best for diverse job functions to share points of view and learn to
work together during an interpretation session. For the widest amount
of buy-in and cross-fertilization, the first sessions often include every-

one on the design team. However, when the team is
large, a single meeting is hard to manage just
because there are so many people trying to be heard.
(Never go above 12 under any circumstances.) After
the initial sessions, it's more effective for large teams
to interpret interviews in subteams of four to six

The structure of an interpretation session 129

people and share the results with the larger team afterwards. Each sub-
team should itself contain a mix of job functions, so that diverse per-
spectives are brought to bear on every interview. Four people on a
subteam is comfortable. If necessary, on small projects where there
simply aren't very many people involved, you can do subteams of two.
Everyone on the subteam should think that this is their job; if they
think they are on the team to help someone else out, it will not seem
like real work to them. At least half of a team should have a design
background (e.g., engineering, UI design). And it is important that
the subteams be formed of different people each time, so that people
are continually challenged with new points of view, so that small
cliques do not form within the team, and so that the entire team stays
a cohesive unit. (See Chapter 6 for more on forming a team.)

R O L E S

Any effective meeting needs clear roles to drive it forward. The interpre-
tation session is supported by defined roles, which give the meeting
structure so everyone knows what to do and what is
appropriate. The roles also give everyone in the meet-
ing something concrete to do, which forces everyone
to interact with and process the data. Everyone
should have a defined role, and its okay for people to
have more than one role.

Give everyone a job to
keep them involved

T H E I N T E R V I E W E R . The interviewer is the one who inter-
viewed the customer. They are the team's informant, describing every
thing just as it happened, in the order that it hap-
pened. Just as we try to keep customers from giving
summary information, the interviewer does not
summarize. Just as interviewers extract retrospective
accounts from customers, the team backs the inter-
viewer up every time they think she skipped a step or missed a detail.
In many ways, it's as though the team interviews the interviewer, to
find out what she learned in her interaction with the customer. The
interviewer draws the physical model, since it tends to be easiest for
the one who was there to draw it. Being the interviewer takes patience
because the interviewer is interrupted at every moment by team mem-
bers sharing insights and demanding clarification.

Do a retrospective account
with the interviewer

130 Chapter 7 The Interpretation Session

Write while you listen—
dont slow down the

meeting to capture data

Work models keep the

team true to what really

happened

W O R K M O D E L E R S . Work modelers draw work models on flip
charts as they hear them. It works well to have two work modelers—

one person models flow and culture and another
models sequences. Artifacts are put up, analyzed,
and annotated as they come up in the interview.
Modelers draw the work models at the same time as
everything else is happening. They do not stop the
meeting to get agreement at each point; it's up to

the rest of the team to raise an issue if they think the modeler got it
wrong. Work modelers have to be comfortable putting up one or two
elements of a model as they hear them without waiting for the whole
story to be complete. They can't get the whole story, then stop the
meeting and repeat it so they can draw the model. They have to draw
it as it comes out. Work modelers do ask questions driven by their
models. If the flow modeler can't show where a communication flows
to because the interviewer never said, he won't be able to draw the
model and will ask.

The work models keep the team from filtering too early—from
deciding that aspects of work aren't relevant before the design has
been decided. The interviewer already filtered what they saw based on
their focus. Work models capture in coherent form everything the
interviewer discovered. The team can decide how much to use later.
It's faster to represent everything than to stop and ask whether each
point is relevant. Drawing the models during the meeting not only
keeps everyone involved, it ensures quality. The entire group watches
and checks them as they are drawn. If they had been drawn by one
person ahead of time, that person would miss more, reviewers of the
models would not catch everything, and they would spend as much
time reviewing the models independently as the whole group spends
together. Some teams have drawn models in advance of the meeting;
those models have been the least detailed of any we have dealt with.

The work models are kept true to the data that the interviewer
saw. Because it is so easy for people to create abstractions that are not

well grounded in real events, we do not record the
customer's general statements of "how we do things"
on the models. Only if the interviewer actually saw
it, or found out about it through a retrospective
account of a specific event, does the data go on the
model. Sometimes a customer is on the design team,

The structure of an interpretation session 131

U4 1 8 Copie s o f sampl e card s kep t i n shoeboxes ; ha s t o kee p
the m tw o year s (regulation)

U4 1 9 Home offic e los t sampl e card s sh e ha d sen t in ; sh e ha d
t o mak e photocopie s o f he r copie s an d sen d the m agai n

U4 2 0 Keep s las t 6 month s o f sampl e card s i n he r hom e
office ; the n put s the m i n shoebo x an d move s the m t o
garag e

U4 2 1 Q : I s ther e an y define d procedur e fo r storin g an d
disposin g o f sampl e cards ?

U4 2 2 Ha s a vide o scree n t o d o presentation s tha t sh e ha s
neve r used ; wa s give n i t automaticall y

U4 2 3 Ha s t o ren t a slid e projector ; wasn' t give n tha t
U4 2 4 DI : giv e sale s rep s a budge t the y ca n us e t o bu y th e

thing s the y reall y nee d
U4 2 5 Insight : Home offic e think s the y kno w th e equipmen t

th e sale s rep s need , bu t i t doesn' t matc h thei r need s

F I G U R E 7 . 1 Extract from the online notes typed during an interpretation meet-
ing. Each note is preceded by the user code and a sequence number. This section of
the notes shows the development of an idea from a problem identified in the work to
a design idea (DI) and an insight about the work situation. These notes are displayed
during the meeting so all can see and correct them. They are a permanent record of
the design conversation, capturing the discussion, and used to build the affinity dia-
gram later.

and they may be insistent on what the formal process is. In this case,
we do record the formal process but in green, a color we use to mean
that this is the formal policy, or that we heard about this part of the
work but didn't actually see it.

T H E R E C O R D E R . The recorder keeps notes of the meeting
online, displayed so everyone can see them using a monitor or LCD
projection panel. Every key observation, insight,
influence from the cultural model, question, design
idea, and breakdown in the work is captured as a
separate note (Figure 7.1). These notes provide a
sequential record of the conversation and are used
later to build the affinity. We usually keep the notes
in a word processing document, one line per note, preceded by a
sequence number and the user code. More elaborate tools are possible,

Write the thoughts of the

meeting before they

are expressed

132 Chapter 7 The Interpretation Session

U4: Fiel d sale s rep ; work s nea r hom e office ; bee n wit h
sale s fo r thre e years ; i n hom e offic e doin g marke t researc h
befor e that . Ver y larg e territory .

Capture design ideas to

avoid discussing them now

F I G U R E 7 .2 Customer profile.

but this simple approach works well. This is the only technology we
use in the room in this session. Except for breakdowns and influences,
elements of work captured by the work models—steps of a sequence,
communication between people, a description of the physical envi-
ronment—do not go into the notes. Demographic information (the
customers age, length of time on the job, skill level) does not go into
the notes either, because these are not aspects of work practice. Demo-
graphics goes in a separate profile for that customer (Figure 7.2).

The recorder will often have to rephrase an idea that has only
been expressed indirectly to capture it in clear, succinct language. A
team will get stuck at a particular point in the interview, talking
around it. A good recorder states clearly what the insight or issue is
and moves the meeting on. Anyone else who hears what the underly-
ing issue is can do the same: they state the issue; someone says, "Cap-
ture that!"; the recorder writes it; and the meeting moves on.

P A R T I C I P A N T S . The rest of the team are participants. They lis-
ten to the story of the interview, ask questions to understand, and

develop their own insight into the work. They pro-
pose interpretations for the team, make observations,
and suggest design ideas. The design ideas are not for
discussion, but so that they can be captured in the
context of the data they respond to. Recording them

unloads the participant's mind so it can get back to thinking about the
customer's work. This is a generally useful technique for keeping a
meeting moving forward: any time someone gets stuck on a point,
write it down in a form that wont be forgotten and will be used at the
appropriate point in the process. Then the person can go on. Partici-
pants watch the models to make sure they are complete and watch the
online notes to make sure they agree with the way they are written.

T H E M O D E R A T O R . The moderator is the stage manager for the
whole meeting. Any meeting has a mainline conversation—the discussion

The structure of an interpretation session 133

that is the primary purpose of the meeting. The job of the moderator
is to keep the meeting on this conversation. In the interpretation ses-
sion, the mainline conversation is: What happened
on this interview and what do we need to capture
from it? The moderator keeps the pace of the meet-
ing brisk. The moderator keeps track of where the
interviewer is in her story and reorients her when
she has been interrupted and lost her place. The
moderator ensures that all the data from the interview is recorded in
an online note or in a work model. The moderator makes sure every-
one is involved and participating by encouraging the
quiet people who don't know how to be heard to
jump in, toning down the people who dominate the
conversation, and ensuring that people can share
insights and design ideas without being ridiculed.
The moderator has to stand outside the process enough so that they
can see what is going on. Moderators who get too involved have to
hand moderation over to someone else.

No meeting works
without someone taking
the role of moderator

Keep everyone busy and
on topic

T H E R A T H O L E W A T C H E R . The rat hole watcher keeps the
meeting on track. A rat hole is any distraction from the mainline con-
versation. A rat hole is an innocent-looking hole in
the ground that, if you dive down it, branches and
turns until you are totally lost in the dark. In a meet-
ing, a rat hole entices the entire meeting into a long
discussion that is not relevant to the purpose of the
meeting. In the interpretation session, when all the
engineers get caught up in talking about whether a
design idea is technically feasible, they are in a rat hole. Later, this will
be the mainline conversation, but not now. Evaluation of any idea,
sharing your own personal experience with a product, or introducing
data from another user ("My guy did that too!") are all rat holes. It is
the responsibility of the rat hole watcher to call "Rat hole!" and get
the meeting back on track.

In practice, everyone acts as a rat hole watcher. Identifying the
role isn't so much to give it to one person, but to give the concept to
the whole team. By naming the role, the team accepts that rat holes
exist and waste time. Without realizing it, each person on the team
has given everyone else permission to point out when he or she is off

Neutralize people

problems by making them

legitimate topics of

conversation

134 Chapter 7 The Interpretation Session

Interpret interviews

within 48 hours

Capture demographics

in a profile

Be nonjudgmental and

keep a brisk pace

topic. Then, instead of getting defensive and angry when someone
calls "Rat hole," everyone laughs sheepishly and gets back to the sub-
ject of the meeting.

R U N N I N G THE S E S S I O N

Interpretation sessions fit into an ongoing cycle of interviewing and
interpretation. The team interviews a few people representing a cross

section of customers. Then there are choices for how
the interviewer prepares for the interpretation session:
If the session will happen the same day as the inter-
view, they run the meeting from their handwritten
notes. If it will happen the next day, they annotate

their notes from the audiotape of their interview. If they delay longer
than 48 hours, they transcribe their notes from the tape. This trades
amount of detail off against the time it takes to prepare. If the interpre-
tation meeting is held close enough to the interview, the interviewer can
remember enough that the extra time for transcription isn't worth it.

Every user is assigned a user code. This code protects the user's
anonymity and is used in the notes, on all models, and in all discus-

sions. It's recorded in a list of interviewees that the
team keeps private. The interviewer starts by giving
a brief profile of the customer—their job function,
the type of organization, and any demographic
information. This profile is recorded in a separate

file, so that later when someone asks, "Was U10 a secretary or a scien-
tist?" the answer is easy to get. Then the interviewer draws a physical
model of the customer's workplace and walks through the interview
step-by-step. Everyone listens and probes to develop new insights into
the work, calling "Capture that!" whenever there is a succinct insight,
question, or design idea to capture.

The tone of the meeting is active and involved, tending to slightly
chaotic; the interviewer is trying to tell the story, everyone is asking
him questions, two or three people are drawing models, the recorder is

typing away, and the moderator is advising people all
at the same time. The tone of the meeting is also
open and trusting: everyone is expected to share
insights and design ideas without stopping to think
whether they are going to look stupid or whether the

The structure of an interpretation session 135

design idea is any good. No evaluation happens at this point; everyone
is thinking out loud. The interpretation session usually lasts two hours,
but the first in a new work domain will be longer, and later interviews
on very focused tasks may be shorter.

At the end of the interview, everyone stops and looks back over
what has been discovered. Then they list their top insights from this
interview, capturing them online and also writing
them on a flip chart to post on the wall. This reflec
tion acts like the wrap-up phase of an interview,
where the whole work practice can be brought
together and implications for design drawn out.
People see more, and see how work hangs together
better, when they have a chance to reflect. The other reason for doing
this is so that the team has an answer when a manager or skeptical
peer walks in the room and says, "So what did you learn?" This is
quite a serious concern. Many projects fail because they do not com-
municate what they were doing effectively to the rest of the organiza-
tion. Making an insights list crystallizes what the team learned from
each interview, helping them to talk about their new understanding.
It starts the process of communication outy which is the topic of Chap-
ter 10. And it makes it possible to take advantage of what was learned
immediately, if related work is going on in parallel to the interpreta-
tion sessions.

T H E S H A R I N G S E S S I O N

When a team has broken into subteams for the interpretation session,
they need a sharing session to learn what the other subteams have
done. A sharing session has its own roles: a speaker
for the subteam presents the models for a particular
user, starting with the physical model, then the flow,
then the cultural model, then sequences and arti-
facts. The speaker walks through the flow by first
describing the interviewee's role and responsibilities, then walking to
each outlying bubble, describing the nature of their interaction with
the interviewee. When presenting the sequences, rather than read
every step, the speaker summarizes the key strategies or breakdowns
that the sequences reveal. As the speaker presents each model, a helper
stands behind and updates the model because we find that the

Models, insights, and
design ideas are the first
deliverables

Sharing is active—it's not
a presentation

136 Chapter 7 The Interpretation Session

Interpretation
sessions foster cross-
functional creativity and
understanding

spokesman always describes more than actually got written down.
Everyone else on the large team listens, questions, and adds interpreta-
tions and insights. The recorder adds any new points to the online
notes, and the moderator keeps the meeting moving and makes sure
everyone is heard. When all the models for an interview are presented,
the whole team reviews and adds to the insights. This brings the whole
team back into one understanding and does a quality check on the
models. It also allows people outside the team to learn what the team
has done. A sharing session should take no more than half an hour.

There's a culture in our industry that says real work doesn't hap-
pen in meetings. "Another time-wasting meeting!" we say to each

other. Yet it's through the stimulus of bouncing
ideas off each other that people work most creative-
ly. It's through the cross-check of several people
looking at the same work that people work with the
highest quality. The interpretation session is a work-
ing meeting that allows for creativity and quality. It
brings together activities that might otherwise hap-

pen individually and sequentially and allows them to happen simulta-
neously in a team process. It's an efficient way of turning an interview
into data useful to a project, recorded in a form that can be saved,
communicated, and used to drive design. You'll know your interpreta-
tion sessions are working when people start clamoring to get in
because they know that's where the creative design work starts.

^

S P A R T
y"

\

Seeing across
Customers

This page intentionally left blank

Consolidation

I ts remarkable that systems can be built to support large numbers of
people at all. People don't coordinate across industries to make sure

they work in consistent ways. Even in a single department, people
develop idiosyncratic ways of doing their job. But as weVe discussed,
any system imposes work practice on its users. It structures work and
interacts with work in many complex ways. Since a system always
structures the work of its users, and since they don't coordinate to
work consistently, why should a single system work for them all? Yet
we take it for granted that products and systems can be built and will
be successful with all their disparate users.

Systems are not designed, for the most part, for individuals; they
are designed for whole customer populations—intended users of a sys-
tem in the market to which a product is sold, or in
the departments of an organization. If a system can
address the needs of a whole customer population,
it's because aspects of work hold across all customers:
common structure, strategy, and intent. A design
responds to this common work structure while
allowing for individual variation among customers.
But how can we discover these common aspects? How do we recognize
them among all the surface differences in how people work? And how
do we represent the common aspects of work so a whole design team
can respond to them? As discussed in the last part, a design team needs
to make the work of their individual customers concrete, tangible, and
available for sharing with others. Without an external representation,
the team has only their opinions and unarticulated knowledge of cus-
tomers to base their decisions on. They have no concrete way to com-
municate what they know and to justify their designs. But the work

The challenge is to design

for a population, but

meet the needs of

individuals

140 Chapter 8 Consolidation

models introduced in the last part represent individual customers.
What models will show the work of a population?

Without the ability to see the work of the people they support,
design teams are limited in what they can do. They are less able to act
strategically to address the needs of their customers, taking short-term
actions to advance long-term goals. Strategic action is as important to
IT departments as to commercial product developers, but the motiva-
tions differ. We will discuss the issues for the two groups separately,
then show how a single set of design tools meets the needs of both.

CREATING ONE REPRESENTATION

OF A MARKET

A commercial vendor supports a market—the people who are inter-
ested, or who the vendor wishes were interested, in their product. The
challenge for a vendor is to address the market with a coherent set of
products, supporting the customer s primary work within the vendor s
area of expertise.

Providing complete support for the work is important—any gap
is an opportunity for a competitor to start selling to the vendors cus-

tomers and perhaps win their loyalty. (Or, for niche

Incomplete support
for the work creates an
opportunity for
competitors

vendors of products that fill gaps in others' product
lines, understanding the whole work practice is
important to recognize and take advantage of the
gaps.) A gap in a product line can happen because
the vendor's line is incomplete, because they do not
have the skills to address everything about the cus-

tomers' work, or because they do not recognize how the work hangs
together. For example, Microsoft dominates the office market largely
because they recognized that providing a bundled suite of products
would give them an advantage. Office work hangs together, so packag-
ing a well-priced set of products that support the whole office is better
than selling word processing, calculations, and presentations separately
—even if the products in the package aren't particularly well integrated.

Without a clear picture of the work of their customers, a vendor's
grip on their market is limited. It is common, for example, to hear
vendors of generic office tools say, "We have millions of users, and
they all use our product differently. There is no one office user." Those

Creating one representation of a market 141

who say this put themselves at a standstill. There's no way to go on to
understand those aspects of work that are common. There's no way to
find the common tasks that, if they were better supported, would give
a single product a market advantage. There's no way to see the com-
mon flow of work that a suite of products could support directly and
that would give that suite a market advantage.

It isn't just the vendors who say that their customers all work differ-
ently. People are invested in being unique, and the first thing that cus-
tomers often say is how different they are from everyone else in the
industry. But much of the detail that makes people different is not rele-
vant to the common pattern and structure of work practice, and it is
this common pattern and structure that make generic software possible.

When we studied configuration management, we found that some
companies make it a very formal process: there are people who have the
job title "Configuration Manager," who decide what
goes into a configuration and make sure it gets built
and tested. We found that UNIX shops generally
don't work this way—they value minimal process and
a "just do it" mind-set. But, in a UNIX shop on the
afternoon a base level was supposed to be finished, we
found someone walking the hallways saying: "Okay everybody, the
build starts in an hour! Get your code checked in! Bob, get your testing
done. We need that feature in this build. Sue, hold off on your stuff. We
dont need it and we dont want to destabilize the build with too much
new code. . . . "

The first organization recognized the role and formalized it as a
job; the second didn't recognize the role formally, but made sure
someone was responsible for performing it informally. The role is part
of the common work structure of the market; the different ways of
assigning the role as a job are differences of detail. A product could be
structured to support both types of organizations, though it might
have to be packaged and marketed differently to deal with the cus-
tomers' different attitudes.

A S I N G L E R E P R E S E N T A T I O N IS A

M A R K E T I N G A N D P L A N N I N G TOOL

When companies can't see the work of the whole market, they have
no way of saying who their market is. They fall back on segmenting

Dont let individual
differences blind you to
common patterns of work

142 Chapter 8 Consolidation

markets in ways they do understand—by demographics and market
characterization of the sort we discussed in Chapter 2. People say

things like, "This accounting tool is useful to small

Segment markets
by differences in work
practicey not industry types

Plan products to address
coherent work practice

businesses; this other product is for home-based
businesses." But do "home offices" work differently
from "small businesses" in any real way? Don't they
have essentially the same tax, payroll, and cash flow
issues? And what happens when a "home business"

grows up and becomes a "small business"? Do they suddenly acquire
a new set of issues? Or another division might say, "This is a query
and report tool for flat files. It doesn't substitute for a database." But
don't users of flat files care about data integrity? What happens when
their small, flat file application is used by two people? What happens
when they want to access their database with the same flexibility as
their flat files? Or a company will say, "This product is for home and
school use." But do people at home have the same needs as schools?
Is there any reason to think that an environment of school-age kids,
adult teachers, and administrators, sharing computers in the regi-
mented time structure of a school, has the same needs as a family in
the flexible environment of a home? In each case, people are segment-
ing the market using the only tools they have available—demograph-
ics. Without a clear understanding of work practice and work practice
differences, there's no other way to segment the market.

Without a way to recognize work practice, vendors also find it dif-
ficult to address a market over a series of releases with a coordinated set

of products. "This is a data manipulation tool; that is
a charting tool." Which is responsible for reducing
the data into a form the charting tool can use? "This
is an operating system work environment; that is an
office work environment." Which is responsible for

finding a file, or switching between applications, or maintaining
reminders? Without a clear understanding of work practice, there's no
good way to look at the whole range of customer activities and carve
them up so that each product supports a distinct set of tasks and every
handoff between tasks and products works. There's no good way to
grow a product over a series of releases, recognizing the whole work
problem and expanding support for it over time. Instead, vendors tend
to drive products from customer wish lists: "Which features can we get

Creating one representation of a market 143

into this version? Which one is most important? Who is yelling the
loudest?" They respond to the immediate demands of individual cus-
tomers, not to the coherent needs of the work practice.

Contextual Design gives vendors of commercial products the
tools they need to address a market strategically. As we will see, con-
solidation creates a coherent understanding of the
work in the affinity diagram and consolidated work
models. With these tools, a vendor can grow a point
product into complete support for a market. If a
product supports one task, natural progressions
(either with the next product version or with related products) might
be to support the work tasks that precede or follow the first task, to
support other tasks performed by the same people, or to support oth-
ers who interact with these people. The vendor can see all the issues
that matter to the market and prioritize them, planning an attack that
delivers coherent product versions over time. Vendors can see who the
customer is and what they care about most.

Work models give vendors rational ways to segment a market. If
the work practice is common, it can be represented in a single set of
consolidated models that define a market. A single product or suite
can address the needs of this whole customer population. Where the
models identify differences—such as different cultures—they show
how the product must be packaged or sold differently to different
groups of people. But when one set of models cannot represent all
customers, it shows that there is not one market. It shows that the
work is too different for a single product to address.

With the consolidated work models of a customer population dis-
played on the wall, a vendor can use them like a map to show what
aspects of work they support, what aspects are the
prime targets to support next, and what related
work they might support in the future. A vendor
could show their competitors on the same chart to
reveal relative strengths and weaknesses and where
the competition is vulnerable to a well-positioned
product. Such a map drives a company's product strategy, just as the
detailed work practice knowledge drives the structure of the company's
products. Without it, marketing, like designers, operates off intuition
and misses opportunities for a strategic advantage.

Grow product offerings to
support related work

A map of customer
practice supports rational
decisions

144 Chapter 8 Consolidation

A systems perspective
reveals overlap in business
processes

FACILITATE THE PARTNERSHIP
BETWEEN IT AND CUSTOMERS

IT departments exist to help the business take advantage of technolo-
gy—to implement and maintain the systems that make the business
run. Because IT s job is to deliver systems that support the work of
the business, they may well become more aware of the processes that
run the business than the departments are themselves. A department
in the business is nearly always focused on getting their part of the job
done most effectively, spending less energy on understanding how
that part affects other departments. Even within departments, groups
and individuals focus on their own job rather than worrying about
how others do their jobs.

IT C A N BE T H E V O I C E FOR C O H E R E N T

B U S I N E S S P R O C E S S E S

More and more, IT departments are being asked to support larger
business processes. It's the IT department that notices when they have
to waste time delivering systems that duplicate work because the
departments themselves are duplicating work. The IT department has
the problem of recognizing and rationalizing the work practice of the
business, so they can develop a coherent set of systems to support it
with minimum effort and redundancy.

As a result, the IT department is often at odds with its clients. If a
client wants something to simplify their work, but their work is part

of a larger process, does IT optimize that one part of
the process at the expense of the whole, or do they
antagonize a client to make the overall process work
better? IT is often the player stuck with the job of
thinking about process and systems across the busi-
ness. They need a way to talk to the business about

how they work and how to build information systems that not only
support current processes, but provide opportunities to simplify and
automate them.

IT departments have the opportunity to drive process improve-
ments themselves. They also must respond to organizational change
driven from above—from management and business process reengi-
neering (BPR) initiatives. These efforts tend to focus on the large

Facilitate the partnership between IT and customers 145

organizational structures: departments and their responsibilities, flow
of materials between departments, and large process steps. Individuals
trying to figure out how to do their jobs in the new organization are
often lost and confused. They need a way to bridge the gap from the
policies and directives of management to define daily actions and
expectations. It's a good idea to include the people who do the job in
redefining it—only they know what s really required—but their own
work practice is not conscious to them. They need techniques to
make work practice visible so they can design procedures that meet
managements directives and work on a day-to-day basis for the peo-
ple and for the job.

From this perspective, a job description for the business analyst (or
the cross-functional team doing analysis) might be, "We are responsi-
ble for understanding our client's business and help-
ing them to do it better." To do this, a business ana-
lyst needs knowledge in the work domain of the
client, skill in seeing process issues that elude even
those who do the work on a daily basis, and under-
standing of the technological possibilities, as well as
ability to design the infrastructure, or work with the technical people
who can do so. It should be clear from the book so far that this is not
an impossible task. Interviewing and work modeling enable the analyst
to learn the business and see process issues; consolidation represents
the work of the department in a stable way. By including customers on
the team, and creating events for including customers, the analyst can
partner with the business in process design and specification of the
infrastructure, maintaining the coherence of the supporting systems.

Consolidated work models help drive consistent process design.
Departments, like customers in a market, tend to be invested in
thinking their work is unique. The highly advanced,
fast-moving, innovative part of the company doesn't
want to think that their work is really structured just
like that of the stodgy, old-fashioned part of the
company. Engineers don't want to think that order-
ing their complex supplies has the same structure as
ordering refrigerators. So they resist using the same
system as another department uses, insisting on one tailored to them.

But if these people see the structure of their work in an external
model, they can see how similar it is to the work done by others and

Fill the gap between
high-level directives and
redesign of daily work

Reveal common work
patterns to support
cross-department system
consistency

146 Chapter 8 Consolidation

can come to accept that the same system might actually work for
both. Similarly if people see how the work they do fits into the larger
process, they can make rational decisions about what makes sense. For
example, if they see how all the work they put into formatting their
report is thrown out and redone by the people who roll results up into
a final report, they might accept a system that applied standard for-
matting automatically

The overall work structure is a backbone, showing how small sys-
tems and individual customizations are variations within the larger
framework. A consolidated view of the work allows IT to be strategic
about the systems they deliver, building systems with the most impact
first and extending initial versions to build up complete support for
the work.

"Enterprise models" are another approach to seeing consistency
across departments. But enterprise models focus on shared data—

important, but not the only aspect of work practice

Extend models over

time to reveal the full

business process

Participation in redesign

fosters buy-in to change

that matters. Object models showing the informa-
tion infrastructure are an important part of the rep-
resentation of the business, but are built up as part of
systems design, later in the process. Neither of these
address the common structure in the work, which, if

recognized, could lead to reusable systems across the organization.
Consolidated models become a strategic resource to the business.

They show what is going on in the day-to-day doing of the work and
how the work hangs together so the business and IT can have conver-
sations about the work people do. The IT organization can maintain
models that show the work of the business they support, extending
them over time as new projects bring them into contact with more
and more of the business.

R E P R E S E N T A T I O N S OF WORK

S T A B I L I Z E R E Q U I R E M E N T S

Whether its new systems or new processes, IT departments face the
huge problem of introducing changes to a skeptical
and change-resistant customer population. People
know these changes will affect the way they work on
a daily basis—unless they buy in, they will find ways
to subvert the new systems. People can accept change

Facilitate the partnership between IT and customers 147

when they are part of the process of looking at the work and designing
new systems that make work more efficient. Since IT is the department
chartered to provide systems, it is a natural part of IT's job to raise
process awareness in the departments they work with. Then the busi-
ness department and IT can work together, combining technical knowl-
edge and knowledge of the business domain to identify process prob-
lems and define process and system solutions.

Contextual Design generates representations of the work of a
business that make process management and collaboration with the
customer possible. It shares with Participatory Design a concern for
including customers in the design of how their work will change.
Consolidated models and affinity diagrams show where the break-
downs and bottlenecks are and drive design conversations about
removing them. For example, the consolidated flow model might
reveal that most of the purchasing department's job has turned into
mechanical, clerical work, leaving no time for the knowledge work of
creating relationships with suppliers. Knowing this is an issue, a team
can design systems that automate the clerical work and provide the
information needed to support purchasing's real job—and customers
on the team can communicate the new ideas back to their organiza-
tion and prepare them for redesigning their roles.

Consolidated models elevate what would otherwise be a bunch of
anecdotes to reveal systemic problems: from "He's complaining about
the PC support group. It doesn't mean anything—
everyone complains about the PC support group,"
to "Look at this! Everyone is getting held up by the
PC support group! We have to fix this!" Making ele-
ments of work practice explicit makes their impact
apparent and helps set priorities.

Consolidated models give the IT department a way to talk back
to the business about prioritization decisions: "I know this system is
important to you. But look, it will be more powerful if we put it off
until we implement this other system here. That sys-
tem will tie this whole process together and can
drive your system with the data you need instead of
requiring you to enter it manually." It's easier for
people to be flexible when presented with a ratio-
nal—and externalized—plan than when they are
just told they can't have what they want. A shared

Move from process

anecdotes to known data

to drive decisions

Make the big picture

concrete to help

departments prioritize

their parts

148 Chapter 8 Consolidation

Models reveal work issues,

so customers can choose

what to redesign

representation of work can foster a partnership between business and
IT, in which both focus on the work of the business and how it can be
improved and supported.

Making work practice visible stabilizes shifting requirements.
Client organizations don't change requirements on a whim—they are

trying to respond to real work issues. But without a
way to see the underlying structure of work, every-
one responds to the immediate current pain without
looking for the underlying problem causing the
pain. One-shot solutions to point problems always
run the risk of becoming obsolete quickly. Stability

depends on seeing how work hangs together and responding with a
system that supports it coherently. An old story has it that one company
employed an army of mops to clean up spots of water appearing on the
floor before someone noticed that the janitors bucket had a hole in it.

Requirements change because they are trying to patch surface
details, and tomorrow a new detail may seem more important. Under-
standing the structure of work leads to supporting work at the level of
structure, which rarely changes, and suggests structural changes that
radically improve the work.

S E E I N G T H E W H O L E

See the work as a whole
to invent systems that
support the work
coherently

Customer data informs a team what kind of system is needed and
reveals the detailed structure of the work the users do. Both commer-
cial and IT organizations can use the data to learn what kind of sys-
tem to deliver. But customer data also reveals the pattern and struc-
ture of work. It guides a team in designing the detailed structure of
the system they develop.

The work practice of a customer population has its own coher-
ence. It is a web of interrelated parts. Change any part of it, and

everything else has to shift to adjust. To respond
with a coherent system, designers need to see the
interwoven pattern of work as a single whole.
Whether designers support internal customers or an
external market, they need a guide for what we will
call systemic thinking: seeing the pattern of customer
work practice as a unified whole and responding to

Seeing the whole

it with a coherent system. Systemic thinking views both work and sys-
tem as coherent wholes that respond to each other, not as a collection
of features, each meeting a specific need.

With a coherent understanding of work, designers can recognize
people's different work styles and strategies and account for them in
the system. They can check that the work still hangs together and
anticipate what may break as a result of the new system. They can bal-
ance needs against each other, recognizing which have the most
impact on the work as a whole. No list of needs or requirements will
give designers this synthetic view; treating each "need" or "require-
ment" as an independent entity makes it too hard to see how they
interrelate.

The first step in systemic thinking is to develop a coherent under-
standing of work, based on actual customer data. That's what consoli-
dation does.

This page intentionally left blank

Creating One View
of the Customer

The challenge of consolidation is to do explicitly, on purpose, and
externally what is usually tacit, haphazard, and internal: develop a

sense for a whole customer population from particular instances and
events. At this point in Contextual Design, particular instances of cus-
tomer experience have been captured through interviews and interpre-
tation sessions. Affinity diagrams and consolidated work models show
how individual examples of work practice are instances of overarching
patterns that define the whole population, and they provide concrete
representations of those patterns.

Affinity diagrams and consolidated work models have different
forms and reveal different issues, but a similar thought process underlies
them all. They are all built by induction, reasoning
'from the particular to the general, from the known
to the unknown' (Fowler 1876). The goal of consoli-
dation is to generate new insights about customers
and how they structure their work. You cant develop
new insight by applying existing rules and concepts to
the data; all you'll ever discover is more detail about the things you
already know. The consolidations we build in Contextual Design use
induction to bring together many instances from individual interviews,
building up structure from detail to reveal new concepts and patterns.
These form the understanding of the customer and provide the chal-
lenge for design.

We don't create consolidations from rational arguments of what
must be true. It is easy to make decisions about the work that are based
not on what you saw, but on logic. For example, it's only logical to
suppose that, faced with a system problem, a system manager would

Reveal the customers story

by seeing the pattern

behind the instance

152 Chapter 9 Creating One View of the Customer

Variation across customers
exists within a structure
—it isnt random

try to figure out what's wrong. In fact, observing system managers at
work suggests otherwise. Often system managers start by applying a
few techniques that fix most problems (of which rebooting the
machine is the most notorious). Only if these fail, do they do any real
diagnosis. And it often doesn't matter if they never discover the actual
cause of the problem—making it go away is good enough. So design-
ing for logically deduced behavior would not be as effective as design-
ing to support trying a few standard actions quickly. Stepping out of
the work to think about it increases the probability of making work
more rational than it is. So never depend on theoretical arguments to
decide what's true. Decide what's true by induction from the data.

Because the structure is built up out of the detail, consolidations
naturally accommodate variation among customers. Where designers

might previously have seen only random differences
between customers, bringing these instances togeth-
er with induction reveals that differences are varia-
tions on a theme. If one person prefers key com-
mands and another prefers the mouse, we can see
these as alternative strategies for controlling the sys-

tem appropriate to different cognitive styles. If one person prefers to
write an outline before starting a paper and another just talks out her
ideas, we can see these as different ways of clarifying thought and
structure before starting the writing. New variants can be recognized
and positioned within the structure—so someone who wrote lots of
different rough paragraphs and then went back to rewrite them could
be recognized as achieving the same intent of clarifying his thoughts
in a new way. Variations exist within a structure.

We support induction by creating external representations of
work practice. Without such representations, people base their design
on their unarticulated sense for the common patterns of work derived
from individual experiences or customer interviews. When the design-
er is good, the work practice is simple, and the system is small, this
works well enough. The designer can hold all the different aspects of
work in her head, can maintain all the implications of a small system,
and can keep control of a project with few people on it. But once a
problem gets complex and the team gets large, an explicit representa-
tion of the work to respond to becomes critical, for several reasons.

First, the sheer complexity of the problem requires a representa-
tion. Just as anyone can multiply single-digit numbers in their head

Creating one view of the customer 153

but needs physical props to multiply six-digit numbers, as soon as the
problem starts to grow designers need to write their understanding
down. In fact, nearly all design thinking demands
props. A sketch of your thinking provides some-
thing to interact with, something to push your ideas
against. By representing the work practice of a cus-
tomer population externally, Contextual Design
takes part of the design conversation out of the
designer's brain and puts it on the wall as a model. The designers then
respond to it as an external entity It holds the memory of the cus-
tomer and forces designers to be accountable to the customer data. It
becomes not just a prop, but a partner in design. (In fact, one team
convinced their management to give them an extra office to act as a
team room on the grounds that the customer voice lived and breathed
and deserved its own room.)

Second, the design is owned not just by one person, but by the
cross-functional design team. They have to get the design out of their
brains and on the wall just so they can act as a team—so they can
share their thinking, take advantage of each others points of view, and
all contribute to the one design. Any one person is stuck in his own
point of view; externalize that point of view and everyone on the team
can see and modify it. If the extended team is too large for one design
meeting, the models hold the thinking so different groups can interact
with it. Contextual Design provides both external representations and
team processes to use them to encourage the team working together
and building on each other's ideas.

Finally, building up a sense of the market instance by instance
works against a real shift in perspective. It works against the creative
leap that might produce a next-generation product
or radical business process improvement. When
faced with one new piece of customer data, people
assimilate it; they modify their entering conceptions
just enough to account for the new piece of data.
They say, "Look—we can handle that with just a
small fix over here." A creative leap comes not from such small adjust-
ments, but from seeing the large cumulative effect of lots of little
pieces, which forces designers to abandon existing assumptions and
come to the data from a fresh perspective. In Contextual Design, we
encourage this by making consolidation a separate step. Instead of

Work models become
a partner in design by
holding work complexity

Consolidating all models
at once challenges
entering assumptions

154 Chapter 9 Creating One View of the Customer

Inductive reasoning is

the key to seeing pattern

Create a bottom-up

hierarchy of key points

to see issues

looking at each piece of data individually and assimilating it, we com-
bine all the data together so it has the maximum impact. (And along
the way we use tricks, such as forbidding old terminology, to prevent
our entering assumptions from showing through, which we will talk
about in the next chapter.) We do it fast—a day for each model and a
day for the affinity. Doing it slowly would encourage assimilation;
doing it fast swamps our old paradigm with new data. Doing it slowly
would encourage point solutions to each problem in turn; doing it
fast encourages broad, systemic responses to the whole work practice
of the whole customer population. The consolidated models and
affinity become the statement of the customer that forces us out of
our rut. They drive the designer to make a creative leap.

Consolidation is the inductive process of bringing all the individual
data together and building one affinity diagram and one set of models

that represent the whole customer population. Its a
process of inquiry—looking at details from specific
customers and asking how each detail informs the
teams focus. Then the parts can be brought together
based on meaning to reveal structure across cus-

tomers. Though it's applied differently for each kind of model, this
same thinking process is used in all consolidation. We'll start with the
affinity to see how to do the thinking and then look at the other models
to see how it is applied to each type of consolidation. We will unpack
the thought process in detail to reveal how this kind of inquiry works.

THE AFFINITY DIAGRAM

The affinity diagram organizes the individual notes captured during
interpretation sessions into a hierarchy revealing common issues and

themes (Figure 9.1). The affinity shows the scope of
the customer problem: it reveals in one place all the
issues, worries, and key elements of work practice
relevant to the teams focus. It also defines the key
quality requirements on the system: reliability, per-
formance, hardware support, and so forth. The hier-

archical structure groups similar issues so that all the data relevant to a
theme is shown together, creating stories about the customer relevant
to the design problem. By reading the affinity, a designer not only

The affinity diagram 155

J ir i t Ï]\\\LÇ ulk

tilt

y
Individual point
captured during
interpretation

Sxxo/ui c\roixp Ukl
SiU'iwuirt^üu] The

b\
SLU

r°:

w^ L\ki
miuuizlu^
;ClS tdiXt'

tli X

^

Individual point
captured during
interpretation

green

pink

a re Vf

S L U I U I U

r its

udxi

\£LiL7

fclüiW

tl M.

J
blue

Individual point
captured during w h i t e

interpretation

Individual point
captured during
interpretation

Individual point
captured during
interpretation

Individual point
captured during
interpretation

Individual point
captured during
interpretation

Individual point
captured during
interpretation

Individual point
captured during
interpretation

F I G U R E 9.1 Structure of an affinity diagram.

learns the key issues, but can see the exact data that contributed to
identifying each issue in the work.

The affinity process was introduced as one of the "seven quality
processes" from Japan (Brassard 1989; also known as the K-J method
in Kawakita [1982]). In the quality community, affinities on the order
of 200 notes are usual. We have optimized the process to handle

156 Chapter 9 Creating One View of the Customer

Ban words to force
rethinking old concepts

much larger affinities, typically about 1500 notes. We build the affini-
ty after a good cross section of users has been interviewed—usually
15-20 customers at four to six work sites, with 50-100 notes from
each customer. We always prefer to finish the affinity in a single day
because it s simply too exhausting to allow it to drag on. This is possi-
ble if we have one person per 100 notes to build it. If our team is
smaller than that, we invite others who are interested in or affected by
the design to participate.

The affinity is built bottom up, by raising common structure and
common themes out of the individual notes captured during the

interpretation sessions. We do not start from a pre-
defined structure or set of categories such as "UI
issues" or "Quality." Starting from such a set of cate-
gories reduces building an affinity to a sorting task;
each note goes in its own bucket, and at the end you

know no more than you did before. Instead, we allow the individual
notes to suggest categories they might belong to. We intentionally
resist using categories that might be familiar to the team, suggested by
their experience instead of by the customer data. We even ban words
the team is too familiar with; for example, a configuration manage-
ment group was not allowed to use the word "version." Banning the
term forces the team to say how the concept is relevant to the problem
and helps them to come at the problem with a fresh perspective.

The affinity is the first consolidation step, and it teaches the think-
ing for all the rest. Building an affinity is inductive reasoning at its
purest. The basic process is to put up one note, then for everyone to
look for other notes that seem to go with it. There's no need to justify
why they go together—just as you can feel an affinity for a friend with-
out justifying why. But we do push for a certain kind of affinity: two
notes have an affinity if they are saying similar things about the work
as it relates to the design focus of the team—they are expressing a simi-
lar intent, problem, or issue in the user s work. So deciding if notes go
together is the result of an inquiry into the meaning of the words on
the note to understand the work issue they represent. When its not
clear how to interpret the words, the team can appeal to the interview-
er to check whether an interpretation is valid. The team is responsible
for ensuring that the data will support the claim they wish to make.

Here are some examples of using the data captured on a note to
infer meaning for the work. Each example gives some of the context

The affinity diagram

12 . U 6
Searche s fo r desire d tex t b y turnin g page s i n ful l pag e
view—bi g headlin e wa s th e distinguishin g featur e

F I G U R E 9 .2 Capturing a search strategy.

(which the team would be aware of) and shows how to look at the
data from a particular focus and see implications for work practice
and design. If these insights occurred to team mem-
bers during the interpretation session, they would be
captured in separate notes; otherwise the affinity
process gives the opportunity to consider the data
again. These notes are all taken from an interview
with a user of a page layout tool.

The note in Figure 9.2 describes how page designers identify their
pages. Even though full page view makes the page too small to see any
detail, it's still possible to identify the desired page by its overall pat-
tern and by large elements that show up even at reduced size. The
work implication is that page designers, concentrating on the layout
and look of pages, find it more natural to search by look rather than
by text on the page.

The note in Figure 9.3 describes a UI issue, but inquiry provides
deeper insights about how these users conceptualize their work. The
product provides a box to contain text, but the characters in that box
don't stay strictly within its bounds—risers stick up past the top, and
descenders can stick out the bottom. The "snap to" guides snap the
box boundary to the guide, which isn't what the page designer wants.
Page designers want to align the tops of the risers, the tops of the
small letters, the center of the small letters, the bottoms of the small
letters, or the bottoms of the descenders. Those are the distinctions
that matter to the page designer—the box is a construct that has no

Inquire into the design

significance of each note

158 Chapter 9 Creating One View of the Customer

Guide

Text box

124 .
" Sna p t o guide "
top s o f th e

snap s t o
letter s tha t

th e to p
stic k u p

of th e
pas t

tex t box ,
th e to p o f

no t
th e

U8 1
t o th e
bo x

F I G U R E 9 . 3 Capturing a UI issue.

Group Post-its to reveal
new insights into
the work

meaning in their work. Even product ideas such as fixing the top of
the box so it coincides with the tops of the risers misses the point. A
more general solution would build knowledge of the alignment points
for text into the product.

The meaning a designer reads in a note and the way he groups
them together is driven by the project focus. A single note will often

suggest different aspects of customer work. The
designer wants the meaning that will give the affini-
ty the most insight, allow it to tell the best story
about the customer for the focus. For example, con-
sider the notes shown in Figure 9.4, collected from
people in grocery stores and legal offices during an

inquiry into search strategies.
Note 110 could be paired with either 214 or 360. The thinking

behind pairing 110 and 214 would be that both notes are about legal
cases and how they are found, so they should go together. The think-
ing behind 110 and 360 would be that the two notes are about using
a similar search strategy to find things: the more recent the thing, the
better. Given the focus on how people find things, pairing 110 and
214 doesn't lead to new insight—it's no surprise that legal cases are
searched in law offices. The only aspect of work that the group reveals
is details about the job of the paralegal staff, which is better represent-
ed on work models. Pairing 110 and 360 raises up a common search
strategy. It's the more interesting pairing because it shows how this
strategy pertains across work domains (searching for cases and search-
ing for groceries). It might be combined with other data to make the
strategy explicit, as in Figure 9.5.

The affinity diagram 159

110 . U 2
The mor e recen t a lega l case , th e mor e persuasiv e i t i s

214 . U 2
Lega l cas e precedent s ar e searche d b y paralega l staf f

I" 360 .
At mil k case , buy s 1 gallo n o r 2 quart s dependin g o n
expiratio n dat e

U4

F I G U R E 9 .4 Grouping notes to reveal design significance.

%LLU\1 SLLUj LS ksl

110. U2
The more recent a lega l case, the more persuasive i t i s

360 .
At mil k case , buy s 1 gallo n o r 2 quart s dependin g o n
expiratio n dat e

U4

720 .
The mos t recen t hous e listing s ar e th e mos t desirable ;
house s sel l quickl y

U8 " 1
goo d

F I G U R E 9 .5 Revealing a common theme.

When notes are collected together, they are given a name to repre-
sent the group. A good group name states the work issue that holds all
the individual notes together. It is a succinct phrase that summarizes
the content of the group. "Different ways of search-
ing" would not summarize the content in the above
example; it would just say what you could learn by
reading the content. "Recent stuff is best" states the
issue; then the individual notes give examples of this

Labels are the customer's
voice speaking from the
wall

160 Chapter 9 Creating One View of the Customer

Labels become the
meaning we design from

The affinity tells a story
of the customer that
matters for design

general statement. A good group name is written as though the user
was talking to the designer; direct, immediate language has more
impact than third-person language. When the notes use the users lan-
guage, the whole wall speaks the user's issues to the design team—they
become a central communication device.

First-level groupings like the above are themselves collected into a
group of groups, which are grouped into higher-order groups. The

result is a hierarchical structure that breaks the data
about the user into manageable chunks. We use
green Post-its at the highest level, which describe a
whole area of concern within the work practice.
Under this, pink labels describe the specific issues

that define that area of concern. Blue labels describe each aspect of the
issue. And the individual notes under the blue labels describe the
instances illustrating the blue label. When well written, the labels tell
a story about the user, structuring the problem, identifying specific
issues, and organizing everything known about that issue. The labels
represent the new information in an affinity. We limit each first-level
group to four notes to force the team to look deeply and make more
distinctions than they would otherwise be inclined to. It pushes more
of the knowledge up into the group labels.

For example, Figure 9.6 is a section of an affinity describing dele-
gation. It's part of a larger story about why people communicate in
doing their job—one reason is to delegate (individual notes have been
skipped for brevity).

This section of the affinity brings together data from many cus-
tomers and many work situations to tell the story of delegating work.

When sharing the data or reviewing the wall your-
self, you might read it like a story: "People delegate
work either because they don't have time to do the
work themselves or because they choose not to deal
with it. They pick someone else to do it either by
who has time, who reports to them, or is otherwise

appropriate given the organization. Different ways of delegating have
different styles: people can delegate doing the work but remain
responsible for it, they can delegate a task by assigning it during a
meeting, or they may pass it on informally." Each pink label names an
issue that is described by the blue labels underneath it so that each
section of the affinity tells a coherent story about part of the work,

The affinity diagram

We delegate our work (green)

Why we delegate (pink)

How I choose who to delegate to (pink)

F I G U R E 9 . 6 A section of an affinity diagram.

and the whole wall brings together all issues and observations to tell a
single story about the customer population.

S T E P S

• Print the notes captured during interpretation sessions in a 3 X 5-inch grid and cut
apart so each is on its own label-sized slip of paper.

• Put notes up on the wall one at a time. After each note goes up, add notes that go
with it.

• When there are too many groups to keep track of, start labeling them with blue
Post-its.

• As groups accumulate individual notes, break them down so there are no more than
four notes in a group.

I • Add pink- and green-level notes to collect groups.

Others who use the affinity process forbid talking while building
the affinity; we encourage it. We view this process as an opportunity
to gain team consensus, which is best supported by
discussion. All work is done in pairs so people can
discuss their insights with each other and get some- ^ "e atrmty captures the
one else to check their thinking. Writing the labels insight of all the brains on
reveals what you're thinking; if anyone disagrees the team
they can object. All the data instances are there to I

162 Chapter 9 Creating One View of the Customer

support one interpretation or another. Each persons different perspec-
tive is shared, and a common perspective built through discussion.
Discussion also helps move people from thinking in buckets (all notes
with "legal case" on them get tossed in one group) to thinking in
work practice—people police each other's notes. When people can't
agree on where a note should go, they talk about what underlying
work issues they see. When people don't understand a note, they go
back to the list of notes from that interpretation session or to the
interviewer to ask what happened in the interview. We've seen no
problems resulting from letting people talk, and doing the inquiry
together requires talk. It lets all the brains work together.

Building the affinity in a day creates a team event that binds the
team together and encourages creating new perspectives. Building
smaller affinities more quickly, or building up one affinity over time,
would allow team members to incorporate each piece of data before
having to deal with the next; as we discussed above, this leads to
assimilation instead of promoting a paradigm shift. Instead, in a single
day the team has to face a whole new way of looking at things. As a
team process, the affinity forces the team to learn each other's points
of view and discuss their differences. But like the interpretation ses-
sion, it puts strict bounds on disagreement; team members talk about
the different meaning they draw from one note at a time. When they
are done they have a single structure representing all their customer
data, which organizes their knowledge and insight and gives them a
basis for design.

Building a 1500-note affinity is exhausting. It's an entire day of
reading and conceptualizing hundreds of little bits of data and match-

ing them with other little bits of data. It's like a

The affinity organizes
hundreds of Post-its into a
story in a single day

combination of "Concentration" and translating
Shakespeare into Latin: the words on a note have to
be interpreted to translate them into the underlying
work practice issue; then the note has to be matched
with the note you saw five minutes ago and you

know is on the wall somewhere. Everyone's working at once, moving
back and forth along the wall, discussing notes with each other,
yelling general questions to the group at large ("Who interviewed
U4?"). Some team members will be more comfortable with the appar-
ent disorganization than others. But the result is exciting for everyone:
a single, sweeping reorganization of the customer data arranged like a

Consolidating flow models 163

story You can read a good affinity from beginning to end to see every
issue in the work and everything about it the team has learned so far,
all tied to real instances. There s no better way to see the broad scope
of the problem quickly.

C O N S O L I D A T I N G FLOW M O D E L S

Consolidating the flow models reveals the communication patterns
that underlie the way the customers do business. It s a basic marketing
tool—it shows who the customers are, what they do,
and how they interact with each other. It shows what
part of the work practice of a customer population
you currently address and how you might expand
existing systems to support more of the job, more of
the whole business process, or more people in the

The flow model reveals

the common roles in

different job definitions

workplace. The flow model shows the scope of the work domain a
project intends to address and shows how the work the project is
focused on fits into the customers' larger work practice. Flow model
consolidation reveals the common structure that underlies all the dif-
ferent ways organizations define jobs. It does this by using roles as the
essential element of work practice on which to base consolidation.

Roles are collections of responsibilities that accomplish a coherent
part of the work (Wirfs-Brock [1993] uses roles in a similar way).
Roles have a primary intent, the reason why the role was created in
the first place. When people organize themselves to get a job done,
they naturally break the job up into roles: "You write the paper," they
say. "I'll review it." The roles people create are not random or idiosyn-
cratic; they are driven by the needs of the work (Fisher 1980; Wirfs-
Brock [1993] applies these ideas to software). Writers are too familiar
with their own work to review it well, so splitting the reviewer and
writer roles makes sense. Reviewing for technical accuracy and review-
ing for grammar and spelling could go together, but they use very dif-
ferent skill sets, so technical review and editorial review are often sepa-
rated into different roles. But checking for appropriate references and
checking that the content is technically valid both depend on knowl-
edge of the field, so it doesn't make sense to break these responsibili-
ties into different roles.

164 Chapter 9 Creating One View of the Customer

Roles are very consistent
across any work domain

Individuals play multiple
roles

Because they are driven by the needs of the work, roles tend to be
consistent across organizations. The mapping from roles to individu-

als—the selection of particular roles an individual
takes on—is much more idiosyncratic. A person will
take on roles they find congenial or have skills for;
organizations will create jobs that combine different
sets of roles. The roles don't change; the mapping to

people does. We do care to track whether a particular set of roles com-
monly is assigned together and who tends to take them on in a seg-
ment of the market—that a particular role tends to be taken by
women or that banks tend to merge these two roles. This will affect
how a system helps people switch roles and may influence how we
package or sell the system.

The primary job of consolidating the flow model is to identify the
roles played by individuals and combine similar roles across individu-

als. The roles that a person plays are suggested by
their responsibilities and tasks and by their interac-
tion with other people. But we aren't just grouping
similar responsibilities. The responsibilities of a role
hang together in the work practice, and responsibili-

ties may be repeated in different roles. It should be possible to con-
ceive of hiring a person to play a role—if that doesn't make sense, the
role is probably not real.

The first step in consolidating flow models is to generate a com-
plete list of responsibilities for each individual.

A N A L Y T I C A L S C I E N T I S T

—run experimental tests on substances

—interpret test results
—document and report results of tests
—schedule test requests from multiple people and departments

—clean glassware

—research appropriate test equipment for group

—report results and trade-offs to group

—order basic supplies
—help other scientists run tests

It is common, when flow models are created by real teams, to discov-
er overlooked responsibilities by examining the interaction between

Consolidating flow models 165

U2
(Analytical scientist)

-Run experimental tests on substances
—Interpret test results

—Document and report results of tests
—Schedule test requests from multiple

people and departments
—Research appropriate test

equipment for group
-Report results and trade-offs to groups

—Order basic supplies
-Clean glassware

Help running tests

Request for help

Scientist
Run experimental tests

F I G U R E 9 .7 Identifying responsibilities.

people. In Figure 9.7, the flow to "Scientist" indicates an additional
responsibility: to give other scientists help on running tests. Informal
responsibilities such as this are as important to how work really gets
done as the formal responsibilities assigned by the organization. So we
add it to the list before considering roles.

A role is a collection of responsibilities, organized to accomplish
one primary intent. For a role to be coherent, it must include all the
responsibilities that are critical to that intent. These
responsibilities cannot be separated into different
roles. So the first responsibility we identify is "Experi-
menter"—the person who runs an experiment. Its a
good starting point because its the primary job func-
tion of this individual. Then we look at the rest of the
responsibilities and ask if they go with this role (much as we asked
whether two notes should go with each other in the affinity): "Interpret
test results" is critical to the Experimenter. An experiment is run by the
strict rules of experimental science; scientists need to know that the
results are reported by the same strict rules or their hard work is wasted
and their reputation jeopardized. It belongs with the Experimenter role.

A role collects
responsibilitieSy which
accomplish an intent

Chapter 9 Creating One View of the Customer

"Document and report results of tests" is more of a judgment call.
It's possible to conceive of a head scientist who oversaw the experi-
ment but left it to others to report results. But we aren't building logi-
cal structures here; we are deriving structure from the data. If every
scientist interviewed in this work domain reports his own results, then
it's not real for this work domain to separate documenting and report-
ing into a distinct role. It's just another responsibility of the Experi-
menter. We keep "help other scientists run tests" with the role for the
same reason—all scientists advise and assist each other. This is a claim
about what it means to be a scientist in today's laboratories. It can be
supported with the data, by checking with the interviewers, and by
checking back with the customers if necessary.

E X P E R I M E N T E R

—run experimental tests on substances

—interpret test results

—document and report results of tests

—help other scientists run tests

We then go on to the next responsibility, "schedule test requests
from multiple people and departments," and ask the same questions:
What's the primary contribution of the responsibility to the work?
What other responsibilities go with it? It doesn't seem that scheduling
test results has to be part of the Experimenter. It would be reasonable,
in a high-throughput lab, to hire someone to schedule experiments for
maximum efficiency. So we define a new role. The result of looking at
the rest of the responsibilities is a tentative list of roles and their
responsibilities for this individual:

L A B S C H E D U L E R

—schedule test requests from multiple people and departments

L A B M A I N T A I N E R

—clean glassware
—order basic supplies

Consolidating flow models 167

E Q U I P M E N T R E S E A R C H E R

—research appropriate test equipment for group
—report results and trade-offs to group

In each case, these roles can reasonably be separated out into a differ-
ent job function from the Experimenter. The groups manager might act
as Scheduler, tracking requests and handing them out so that equipment
and people are busy but not overbooked. Lab assistants might play the
Maintainer role, keeping the lab running smoothly. And an outside
agent might be assigned to research equipment and provide options.

The assignment of roles to individuals or job functions varies
from one organization to the next and from one individual to the
next. Roles that are separate in one case may be combined in another.
In our example, the team identified a different set of roles for another
analytical scientist:

T E S T E R

—run a test on samples
—convert raw data into meaning
—report results of tests to requester

—describe what's needed of new equipment

M E T H O D D E V E L O P E R

—develop a new test procedure through experimentation
—document the new test procedure in standard form
—assist other scientists in using the new procedure

Consolidation in a flow model happens by recognizing when dif-
ferent people are playing the same roles. Here, Method Developer is a
new role, but Tester is clearly the Experimenter role
with a different name. (If the same people analyze
both individuals and recognize the similarity they
would use the same name. But when the team breaks
into sub teams, different people may do the analysis.
Even when it's the same people they don't always recognize the role
until they have a chance to step back and compare.) Experimenter and
Tester each have a responsibility the other doesnt have—"help other

Multiple people play the
same role

168 Chapter 9 Creating One View of the Customer

scientists run tests" and "describe what's needed of new equipment,"
respectively. But both responsibilities fit right into the role, so we can
combine the two roles into a single consolidated role definition. Here
again we use affinity-style thinking to look at the meaning of two dif-
ferent items and combine them when they go together.

We choose the name "Experimenter" as a better description of the
primary intent of the role. Just as we use plain language on the affini-
ty, we try to keep role names plain and everyday. This makes the real
work of the role more immediate. However, we try to capture the
essential work of the role in the name. Even though some experiments
are tests, "Experimenter" better captures the flavor of the work and
mind-set of the people.

E X P E R I M E N T E R

Design the system for the
role variation that
actually occurs

—run experimental tests on substances

—interpret test results
—document and report results of tests
—help other scientists run tests
—describe what's needed of new equipment

It is normal to build up responsibilities of the consolidated role
this way. We expect that not every responsibility will be discovered in

every interview, and in fact, our second scientist
may never have had the occasion to help another.
But the consolidation shows what's natural to the
role. It tells us to expect that the first scientist may
be called to give opinions on equipment and the
second may be asked for help. It tells us that any

new design for the system or organization must allow for these events.
For example, if the organization were to measure scientists strictly on
the number of experiments they perform, they would lose the synergy
of interaction between scientists. This is how we build up an under-
standing of a whole job out of multiple interviews. This is how con-
solidation reduces requirements skew—it identifies needs that the cus-
tomers haven't stumbled over yet. And this is how to deliver systems
based on actual customer data without sacrificing flexibility; the flexi-
bility built into the system accounts for the actual variation in work
practice, not hypothetical situations that never actually occur.

Consolidating flow models 169

In consolidation, we keep track of how roles map to individuals.
It will matter for design to know that one person played a dozen roles,
or that a single role was played both by low-level technicians and
Ph.D. scientists. (Why is a Ph.D. doing work a technician could do?
Couldn't we sell them a system or change the process to make better
use of their time?) So we assign a color to each job function, depart-
ment, or demographic group we wish to track, and color the role to
show where it came from. If scientists are yellow, the Tester role will
be yellow. If lab technicians (who also run tests) are pink, the Tester
role will be yellow and pink. With this coding, designers can scan the
model and see immediately how it maps to people's job functions.

The final step of consolidating a flow model is to consolidate the
artifacts and communications between people. Each artifact and each
communication represent an interaction not just be-
tween people, but between roles. When the second
scientist tells the first what she needs from a new spec-
trometer, she is the Experimenter talking to the
Equipment Researcher. When the first gives help to
another, he is an Experimenter helping another Experimenter. The con-
solidated flow model carries these individual flows over, showing them
between roles rather than between individuals. The artifacts or commu-
nications themselves may be consolidated and given a single abstract
name: "help on device use," "assistance reading a method," and "sugges-
tions on getting around device limitations" might all be represented on
the consolidated flow as "help with devices and procedures." The flow
can be simplified by showing only the flows relevant to the project focus.

Link the roles with real
communications

S T E P S

Select six to nine individual flow models that are complex, interesting, and cover the
key variants of the work domain.

List responsibilities and identify roles of each person, group, and place on the
individual flows. Name the roles.

Collect similar roles from all models and lay them out on a consolidated model.
Rewrite responsibilities and name each role.

Collect artifacts and communications from the actual models. Draw them between
roles on the consolidated model.

Transfer any breakdowns from the actual models onto the consolidated model.
Compare the remaining individual models against the consolidated flow. Add any
roles, responsibilities, or important flows that are not represented by the consolidated
model.

170 Chapter 9 Creating One View of the Customer

Between 15 and 20

customers is enough to see

the pattern of role and

communication

Flow model consolidation leads a team from knowledge of indi-
vidual users to understanding the structure of work across a customer

population. It's a fairly efficient method for doing
this; after consolidating about nine good and diverse
models in a work domain, additional models will
offer few surprises (teams that have gathered much
more data—from up to 40 customers—quickly dis-
covered that they were duplicating what they already
knew). Between 15 and 20 customers from a typical

work domain is enough to see the pattern of the flow of work between
people as they do their jobs.

The flow model is nearly always a useful model to build and con-
solidate. Nearly any job requires working with others, receiving infor-
mation and handing results to others, or cooperating with others in
some way Only when the project focus is narrowed to the interaction
with the tool only—usability of an interface or interaction with a
device—can the flow be omitted. Even then, there's a potential for
overlooking important interactions. It s better to build it anyway.

The consolidated flow model is the designers tool for seeing the
roles that underlie idiosyncratic organizational structures and inter-

personal communication patterns. It shows the cen-

The consolidated flow

maps the players in the

customer population

tral roles and key responsibilities of the work prac-
tice being studied and how they coordinate and pass
artifacts around to make work happen. The consoli-
dated flow model is the best map to how work is
done, showing the breadth of work and the details

of how people interact. The flow model shows what roles people play,
so that if you have systems already in place, you can see what roles you
support. It can show how the systems taken together support the
whole of the work (or don't). It shows what other roles the same peo-
ple are likely to play, which are natural roles to support next—the
potential customers would already be sold on your system or your
company It shows who else a role has to interact with to get a job
done; supporting these other roles or the interaction between them is
also a natural growth path. The consolidated flow model is your map
to your customer population. It shows you where you are and where
you are going.

Consolidating sequence models 171

CONSOLIDATING S E Q U E N CE
MODELS
A consolidated sequence model reveals the structure of a task, show-
ing the strategies common across a customer population. Individual
sequence models describe one real instance of work,
showing how a person accomplished a task in that
case. Consolidated sequence models bring together
many instances of many individuals accomplishing
the same task, revealing what is important to doing
the work: what needs to be done, the order and
strategy for doing it, and all the different motivations driving specific
actions. A consolidated sequence model shows a designer the detailed
structure of the work they need to support or replace. It shows all the
different intents that must continue to be accomplished in the pres-
ence of the new system or rendered unnecessary. It shows the overall
structure of the task, which may be mirrored in the system to make it
more useful and intuitive. And it shows where the task is needlessly
complex and could be simplified by a new system.

Tasks to be supported by a new system may be performed by a
customer population that spans organizations and industries. Even
within a single company, different departments will
implement different procedures, and people with
different cognitive styles will approach the work dif-
ferently. Nonetheless, over and over again, we find
common structure within any domain of work. Peo-
ple only develop a few different strategies for accomplishing similar
tasks. The key is to learn to see the common structure in the detailed
actions people take: the common activities, intent, and strategies for
accomplishing a task.

The sequences in Figure 9.8 show how two system managers diag-
nosed problems. Skimming U5's sequence, we see that he is notified
by an automated process that something is wrong;
he pokes around looking for problems; then he calls
for help. These immediately become potential activ-
ities: notify, diagnose, get help. Shifting our atten-
tion to U4, she is notified by a person, pokes around
on the hardware until she recognizes that the problem is something
AT&T has to fix, and she puts in a call to them. Again we see the

Consolidated sequences
show task structure and
work strategies

People use only a few
strategies to do a task

Identify the activities
across all sequences

Chapter 9 Creating One View of the Customer

U 5

FixAll-In-1

• Trigger: Watcher sends mail that the
All-in-1 (Al) mail system isn't
working

• Log onto failing system to search for
problem

• Discover the Al mail process has
crashed (ACCVIO)

• Look at the time of the crash: only
this morning

• Try to restart the process by hand

• Process wont restart

1 • Look at the process log; can't tell why
it won't start

• Call expert backup group for help

• Ask them to log into the system and
look at problem

• Keep looking for problem in parallel

• Search for problem

• Discover that process can't create a
needed directory

• Try to create needed directory by hand

• [Look to see if directory created]

• Can't create directory; disk is too
fragmented

• Call expert backup to explain
problem; type and talk on speaker
phone at the same time

• Discuss problem; agree on the exact
procedure to follow

• Implement fix

• Write mail to users describing changes
that affect them

• Done

U 4

Fix router problem

• Trigger: Person walks into office to
report problem—can't access files on
another machine

• Go into lab to look at equipment

• Flick switches to do loop-back tests,
isolating wire, MUX, router

• Determine problem—bad router

• Call AT&T people in second
organization

• Do something else while waiting for
AT&T to show up

• AT&T comes to look at problem

• Look in book to tell which wire is
which; show which nodes are on
which wires and which wire goes to
which router; paper for easy access

• Tell AT&T people which router is at
fault and which wire it's on

• AT&T people fix problem

• Log problem and fix

• Done

F I G U R E 9 .8 Two ways to diagnose a problem.

Consolidating sequence models 173

U S

Notify
• Trigger: Watcher sends mail that the

All-in-1 (Al) mail system isn't
working

Diagnose

• Log onto failing system to search for
problem

• Discover the Al mail process has
crashed (ACCVIO)

• Look at the time of the crash: only
this morning

• Try to restart the process by hand
• Process won't restart
• Look at the process log; can't tell why

it won't start

Get help
• Call expert backup group for help

U 4

• Trigger: Person walks into office to
report problem; can't zcœss files on
another machine

• Go into lab to look at equipment

• Flick switches to do loop-back tests,
isolating wire, MUX, router

• Determine problem—bad router

• Call AT&T people in second
organization

F I G U R E 9 , 9 Identifying activities.

basic structure of activities: notify, diagnose, get help. (We'll save the
rest of the sequences for later.) For now, we'll match up the steps in
the sequence that initiate a new activity in Figure 9.9.

The first step of a sequence is the trigger that initiates it. Triggers
may consolidate, as when several individual sequences start with
someone reporting a problem in person. More
often, as in this case, the trigger steps identify alter-
natives. Either way, we define an abstract step to rep-
resent both triggers. An abstract step states the work
done in each of the instances independently of the
specifics ofthat instance. In this case, we just list the
two different triggers we have discovered (Figure 9.10). In other cases,
triggers might introduce different strategies—a system manager who
is notified of a problem by a help desk may go right into hypothesis
testing, but a problem report that comes from an automated process
may always start by researching the problem. When this happens we
keep the triggers separate, to show how they initiate different branches
of the sequence. It also happens that triggers are not at the same point

Identify and name
abstract steps across all
sequences

174 Chapter 9 Creating One View of the Customer

A B S T R A C T S T E P U5 U4

• Trigger: Find out about • Trigger: Watcher sends mail • Trigger: Person walks into office
problem that the All-in-1 (Al) mail to report problem; cant access

—Automated procedure s y s t e m i s n ' r w o r k i n g files on another machine

—Someone reports problem

F I G U R E 9 . 1 0 Alternative triggers.

in the sequence at all. Email from a user may in fact not be the first
report of a problem, but the response to a query as part of the research
activity. Such a trigger needs to be moved down in the sequence.

The next steps all contribute to diagnosing the problem. Our task
is to match up steps accomplishing the same thing in each instance

and define abstract steps for them. We don't yet
know exactly how the steps match up; we only
know that they all have to be sorted out before get-
ting to the steps in which U4 and U5 call for help.
The first step in each case positions the user logically

Match up steps doing
the same thing

(in the case of logging in) or physically (in the case of going to the
computer lab) to start diagnosing the problem. Logging in or going to
the lab are details unique to the instance; the work being done is for
the users to go where they can deal with the problem: our next
abstract step (Figure 9.11).

Both U4 and U5 next try different things on the system until the
problem is identified. "Discover the Al mail process has crashed" and
"Determine problem—bad router" both seem to mark the point at
which the user identifies the problem. U4's sequence has a step in
which U4 flicks switches and runs tests to determine the problem.
The team who wrote U5's sequence didnt write down such a step, but
its implied by "Discover the Al mail process has crashed"—U5 must
have done something (looked at running processes or looked at
process logs) to discover the process is down. But as U5s sequence
indicates, all that's happened so far is to discover why the symptom is
happening; the underlying problem (a full disk in U5 s case) may not
have been determined yet. So the consolidation looks like Figure 9.12.

At this point, we're consolidating the different kinds of problems
that the system managers discover to see the common structure of di-
agnosis across all problems. If we wanted to design for each kind of

Consolidating sequence models 175

A B S T R A C T S T E P Ü 5

Go to the place where the
problem can be solved
(physically or logically)

Log onto failing system to
search for problem

U4

• Go into lab to look at
equipment

F I G U R E 9 . 1 1 Going to deal with a problem.

A B S T R A C T S T E P

• Execute commands and tests on
suspect system to identify
anomalous behavior

• Determine cause of symptoms

U 5

• (Do something to discover the
Al process isn't running)

• Discover the Al mail process
has crashed (ACCVIO)

U 4

• Flick switches to do loop-back
tests, isolating wire, MUX,
router

• Determine problem—bad
router

F I G U R E 9 . 1 2 Identifying a problem.

Watch for different

strategies to do the

same thing

problem uniquely, we wouldn't do this; we would keep the kinds of
problems separate in the consolidated sequence. But for this problem,
seeing diagnosis is a fine enough level of detail.

Next, the two users diverge in their strategies. U5 goes on to try to
fix the problem. But U4 decides that she cant fix this problem and that
she has to call on AT&T to do the fix. Neither U5's
decision to go forward nor U4 s decision that AT&T
has authority to fix the problem are written explicitly,
but both are implied by the user's actions. So the
abstract steps branch to account for the two cases.
Consolidating them, we get Figure 9.13.

This process repeats until the whole sequence is consolidated. We
identify the sections of the sequences that match, match up individ-
ual steps, and name abstract steps for them. Either
after a whole activity or at the end of the sequence,
we step back and ask the intent of each step. Why is
the user doing this at this point? What are the obvi-
ous and the nonobvious reasons for doing the step?
There may be more than one intent to any step, and there may be
high-level intents that cover a whole set of steps. It s easy to identify
and support the main intent of the sequence. It's harder to see all the
additional, secondary intents that are also important to the customer.

Identify intents of
the steps

176 Chapter 9 Creating One View of the Customer

ACTIVITY

Diagnose
problem

Get help

A B S T R A C T S T E P

• Estimate impact of
problem

• Decide whether I can fix
the problem

• If I decide I can fix it:
• Attempt fix

• See if fix worked
• Try to figure out why it

didn't work

• Decide I can't fix it, call
on help

U 5

• Look at the time of the
crash: only this morning

• (Decide to fix)

• Try to restart the process
by hand

• Process won't restart
• Look at the process log;

can't tell why it won't start

• Call expert backup group
for help

U 4

• (Decide AT&T has to fix)

• Call AT&T people in
second organization

F I G U R E 9 . 1 3 Diagnosing a problem.

We decide what they are and write them down. We talk to the inter-
viewer if we aren't sure of an interpretation or check back with the user.
The result, for the sequences we've been doing, looks like Figure 9.14.

Of course, a team would consolidate three or four actual sequences
at once, not just two. The first cut at abstract steps would be corre-
spondingly more robust. Once the initial set of sequences has been
consolidated, the rest of the sequences are compared with the consoli-
dated sequence and used to extend it. Incorporating more sequences
will add additional steps, show new strategies, and provide more alter-
natives for steps that are already represented.

STEPS

• Select three or four sequences addressing the same task. Look for detailed sequences
that, at a quick scan, seem like they will consolidate reasonably well.

• Scan the sequences to identify activities. Mark the point where the first activity ends
in each sequence.

• Match the triggers across sequences. Be aware that the instances may start at different
points in the story.

• Match steps of the sequence within the first activity. Write in omitted steps if
necessary to make matching steps easier.

• Write abstract steps as you go. Write any breakdowns on the abstract steps as you
come to them.

• At a convenient stopping point—the end of the activity or the end of the sequence—
go back and write intents for each step.

Consolidating sequence models 177

ACTIVITY

Find out about

Go to problem

Diagnose probl

Fix problem

Call on help

problem

location

em

I N T E N T

• Learn about problems quickly

• Discover problems before users
do

• Provide quick response

• Make it possible to do diagnosis
and take action

• Find cause of problem

• Decide who's been affected

• Decide if any additional action
should be taken to notify
people of status

• Make sure I don't do things I'm
not supposed to

• Fix the problem at once

• Get the people involved who
have the authority or the
knowledge to fix the problem

• Ensure problem gets fixed, even
if not my job

A B S T R A C T S T E P

• Trigger: Find out about
problem
—Automated procedure

—Someone reports problem

• Go to the place where the
problem can be solved

• Execute commands and tests on
suspect system to identify
anomalous behavior

• Determine cause of symptoms

• Estimate impact of problem

• Decide whether I can fix the
problem

• If I decide I can fix it:

• Attempt fix

• See if fix worked

• Try to figure out why it didn't
work

• Decide I can't fix it; call on help

F I G U R E 9 . 1 4 A consolidated sequence model.

Consolidated sequence models show the common structure of a
task across a customer population. Developing a consolidated sequence
of a task shows strategies used to achieve it, the structure of the task in
activities, and the intents achieved in doing the task. These define a
backbone into which new variations can be incorporated and account-
ed for. In our example above, its not hard to see how a new trigger or
new step in diagnosing a problem could be accounted for within the
structure we developed. Armed with this knowledge, designers can
structure their systems to reflect the structure of the task. Where the
structure is inherent to the task, it can be built into the system; where

178 Chapter 9 Creating One View of the Customer

Make sure your system
accounts for all intents
before automating a task

it is driven by constraints of the environment, the system can remove
steps and streamline the work.

Only consolidate tasks that the system will support, that you will
redesign, or that you need to understand in detail. Use the flow model

to identify the important tasks—the ones that help
the user accomplish their central responsibilities. If
the task will not be supported by the system, there's
no need for a consolidated sequence model for that
task. It's sufficient to scan the individual models for
intents or breakdowns that might need to be

addressed or that might inform another model. If a task is to be obvi-
ated, the consolidated sequence may still be useful because it identifies
the intents that the current work practice addresses. Getting rid of the
task will cause problems unless all these intents are supported in other
ways or rendered irrelevant.

CONSOLIDATING ARTIFACT

MODELS

Consolidated artifact models show how people organize and structure
their work from day to day Individual models show the structure and

usage of the things people create and use while doing

Consolidated artifacts
make conceptual
distinctions concrete

their jobs. Consolidating artifact models shows com-
mon organizing themes and concepts that people use
to pattern their work. They complement sequence
models by describing the things manipulated while
doing the task described by a sequence. They provide

clues to the appropriate structure for a system in the concepts they rep-
resent. They reveal work intents that must be supported and that
might otherwise be overlooked. And an inquiry into the details of their
structure shows how to support specific tasks.

Just as people only use a few strategies to plan their work, and
define consistent roles to break it up among people, they use a consis-
tent set of conceptual distinctions to organize how they think about
work. These conceptual distinctions become concrete in the structure
that people impose on artifacts they create and use—either by building
the artifact in a particular way or by making annotations on an artifact

Consolidating artifact models 179

given to them. Because the tasks that people do have similar structure,
the intent and usage of artifacts are also similar. An inquiry into the
individual artifacts that support similar types of work reveals this com-
mon structure.

The first step when consolidating artifact models is to group arti-
facts of a similar type—all artifacts that have the same intent or usage
in the work. Deciding what is similar enough to
consolidate together is modulated by project focus
A project to develop a personal organizer tool might
want to study different kinds of calendars: personal
organizers, shared wall calendars, online calendar
tools. Which of these should be consolidated togeth-
er? Consolidating all types would highlight common aspects of sched-
uling and organization, but would tend to bury the unique usage and
intent of the different tools. For example, the primary characteristic of
a wall calendar is that it is shared and can coordinate multiple people;
a personal organizer is private but easy to carry anywhere. Consolidat-
ing the different kinds of calendars separately would spotlight each
kind, but would tend to hide common issues across all types. Since
our project is to create a new organizer product, we decide to try con-
solidating all the tools together so we can identify and transcend com-
mon issues. If we were creating generic PC software, we might have
chosen to consolidate online calendars separately to better understand
the strengths and limitations of the competition.

Once similar artifacts are collected, we identify the common parts
of the artifacts (Figure 9.15). These parts and their relationships are
the first and primary distinctions created by the arti-
fact. These initial distinctions are driven by physical
and cultural limitations as well as by the nature of
the work. So a personal calendar has a cover to pro-
tect it from spills and scuffs. The need for a cover is
driven by the environment, not by the nature of scheduling. The
cover creates pockets that are useful places to store things, but they are
not inherent to scheduling either. The to-do lists and kids' pictures
one finds in these pockets suggest how, when a personal organizer
becomes part of daily life, it can play a larger role in keeping things
organized than just scheduling. On the other hand, the rubber band
and tape both identify the current day and seal off the past—this sug-
gests a recurring intent that is inherent to scheduling. Both these

Let project focus
determine which artifact
types to consolidate

Identify common parts of
the artifacts

180 Chapter 9 Creating One View of the Customer

•-Cover ^Today" identifier ^-Scheduling area

■Pockets-

L
Cover ^Today" identifier

V (Tape)

Jr *

r,F::r-r
;r~|r-r:r
i Z Z M Z Z - i - f s c h e d ulin g area

6

13

20

27

7

14

21

28

1

8

15

22

29

2

9

16

23

30

3

10

17

24

4

11

18

25

" ^
12

19

26

F I G U R E 9 . 1 5 Two kinds of calendars.

mechanisms suggest that you schedule into the future and use the past
only for reference.

Having identified common parts, we can look within similar parts
to identify structure, intent, and usage. While the primary parts of a

calendar are pretty much determined by the manu-

Identify the usage and
intent of each part

facturer, the user has more scope for structuring the
contents of a part in the way that makes sense to
them. So a common part of a calendar is the sched-
uling area—the week or month view that everyone

uses. Within that area we look for the different ways people organize
time. So a multiday meeting is usually represented with a symbol that
crosses days—people clearly think about one event spanning several
days, not about a series of days, each of which is individually booked.
Our tool had best provide for events that span days. So the inquiry
into a part starts by observing one characteristic of one model, inquir-
ing into its meaning for the work or the concept it embodies, and
identifying that concept in the other models.

Consolidating artifact models 181

/l0.rk$,tuto Course,

1 r>
Ca
*̂— \tré»w 1 rip 1

1 1

The contents of a part identify concepts and also presentations of
those concepts. Looking at how events are written, we see that some are
highlighted so they stand out from the rest. Clearly
"important event" is a distinct concept. We also see a
variety of ways that the event is highlighted. Depend-
ing on our focus, we may care to capture these differ-
ent presentations. If we are developing an online cal-
endar and if most people use double underlines to highlight important
events, it makes sense to use double underlining in our calendar tool.

The artifact will keep us honest if we let it. The artifact suggests
that some events should be marked as important. It is natural for
engineers, trained to worry about future extensibili-
ty and to hate special cases, to argue from this to
something like a numerical priority scheme. Events
could be given a priority from 1 to 10, views could
be defined to show only events above a certain prior-
ity, functions could be defined to search for the next

Look at how the parts are
presented to grab your eye

Keep online artifacts
simple by letting real data
guide design

182 Chapter 9 Creating One View of the Customer

Make the consolidated

artifact a good

communication tool

priority 1 event, and so on. But we do not have the data to support
any of this. Saying some events are important is a very much simpler
concept. Not only would these extensions make the implementation
more complicated, they would also make the tool harder to under-
stand and deal with. The result is a loss for the user, not a gain at all.
Or to take another example, people sometimes tell us they write in
different pens for different reasons. But the artifact tells us that in
reality people write in the pen that is handy at the time. Being true to
the message that the artifact gives us will help keep us from overcom-
plicating the system.

When an artifact like a calendar is predefined for later use, the
structure people use may not match the structure they are given. They
may go beyond the given structure, as when they separate reminders
from meetings on a day. Or they may simply ignore the given struc-
ture, as when they draw the line for a multiday meeting right across
the lines separating the days. Whenever the users depart from the
given structure of the artifact, it reveals concepts and strategies that
are real in the work. They represent opportunities for you to support
the work better.

Having identified the parts and their usage and looked at their
structure, we are ready to draw the consolidated model (Figure 9.16).

In this case, we decided to look at calendars of dif-
ferent types knowing they might not consolidate
well. In the event, weVe identified many common
intents and structures, yet because personal calen-
dars are so different from wall calendars, the usage
and mechanisms differ. It often works well to put

the common or typical case in the center of a consolidated artifact,
with variants around the sides. So we choose to put personal calen-
dars down one side and wall calendars down the other, highlighting
common intents and showing how each kind of calendar achieves
that intent in its own way. The actual schedule part, where we saw
little difference in intent or usage, we put in the center. Finally we
step back and scan the whole model, looking for additional intents
revealed by putting all the information together. By putting every-
thing about this kind of artifact together, the diagram helps design-
ers consider all aspects of the artifact coherently: common intents
and the different ways they are achieved, the structures people create
to help them, and the concepts they use to organize their work.

Consolidating artifact models 183

Personal calendars

because small and portable

Rubber band closes off past

Always available

Closed past open future

Shared calendars

.because large and hung on wal

Scotch tape closes off past

n y

Appearance fits
with personal style

.through nice cover, interior design ...through art, decoration around a theme

v

Montnonly f ^

No significant difference between personal and shared

13

tit

20,
Highlight
important

events

27

iW

8
Line for multiday events (usually

~y\ ~W\

21

for smgle-day events

V V

28

22

29

23

30

10

17
Scheduled
events run

down

24

Reminders
run up

11

18
X;X0 event
(most common)
X:X0-Y YO event
(closely scheduled day)

25

SäS

F I G U R E 9 . 1 6 A consolidated artifact.

STEPS

• Group the artifact models by the role they play in the work.

• Identify the common parts of each artifact. Identify the intent and usage of each part.

• Identify common structure and usage within each part. Identify breakdowns.

• Build a typical artifact, showing all the common parts, usage, and intent, and
showing how they are presented where relevant. Show breakdowns.

Consolidated artifact models open a window into the mind of the
users, showing how they think about the work they do. They are the
most direct way to see how your users think. In addition, they help

184 Chapter 9 Creating One View of the Customer

Consolidated artifacts

show the footprints

left by tasks

Physical models reveal

how space and layout

affect work

identify hidden intents that might otherwise go undetected and be
unsupported in the system you build. They record the footprints left by

multiple sequences, often more than you could ever
observe in person. One team examined scores of
tracking tickets, collecting from each one the different
intents and events that it recorded. In this way they
quickly learned about different issues in the work rep-
resented by many hours of actual experience.

The level of detail to follow in consolidating an artifact depends
on your project focus. If you expect the artifact to be rendered obso-
lete by the new system, do a quick consolidation emphasizing usage
and intent. Look for secondary intents that imply potential problems
should the artifact be removed. If you expect to support the work that
the artifact supports, do a full consolidation, looking at concepts and
structure as well. This will inform the organization of your system.
And if you expect to put the artifact or its equivalent online, or if your
system will create instances of the artifact (e.g., if you print calendars),
capture details of presentation as well.

CONSOLIDATING PHYSICAL

MODELS

The physical model shows the structure of the physical environment
as it affects the work. Individual physical models show the workplace

and site for each user interviewed. Individual mod-
els show how the place is structured, how it is orga-
nized to support work, and how people and things
move through the space in the course of getting
work done. The consolidated physical models show
the common physical structure across the customer

population and the key variants that a system will have to deal with. It
keeps the design team aware of the limitations and constraints im-
posed by the physical environment.

Just as with the other aspects of work practice, physical structure
repeats over and over. At first glance, office buildings present many
different shapes, materials, and architectural styles. Yet inside the
door, there is invariably a lobby area, with a receptionist or security

Consolidating physical models 185

Living room
(really music room) Cooking area Sitting area

I , , 4 , i

Living room
Cooking area Dining area (sitting area)

Spare room
(office)

Dining area

F I G U R E 9 . 1 7 Determining the usage of space.

guard behind a desk who helps locate people. Beyond them are peo-
ple's offices, labs, and shared work areas. Looking beyond a single
building, as soon as a company grows, recurring issues crop up around
travel between sites, communication between sites, support for meet-
ings attended by people at several sites, and so forth. Consolidation
identifies and highlights these common structures and issues.

Consolidation of the physical model begins by separating the mod-
els into types of spaces. Usually one set of models represents a whole
site or multiple sites. It focuses on whole buildings
and relationships between them. Then there's anoth-
er set that represents individual work spaces. Individ-
ual work spaces may be separate rooms, cubicles in a
large open room with partitions, or separate desks in
a larger room. And sometimes there are specialized spaces that are use-
ful to consolidate—labs, loading docks, meeting rooms, and so forth.
Individual models belonging to each of these groups are collected
together (Figure 9.17). Always depend on the usage of a space to deter-
mine where to sort it, not its formal name—an unassigned office with
a round table where staff meetings are held is a meeting room, not an
office. A salesman's car may be his workplace.

Within each set of models, we catalog the common large struc-
tures and organization. Buildings, rooms, walls, where people sit in

Identify unique usages of

individual space

186 Chapter 9 Creating One View of the Customer

Look at how objects

cluster and their

proximity to people

Identify the constraints

that the environment

imposes on work

Show movement patterns

and breakdowns

relationship to each other and the hardware they use—these are all
distinctions that can be identified on site models if relevant to the

project focus. Within an office, the location of
desks, chairs, the in-box, and the telephone relative
to each other and the occupant all reveal the organi-
zation of the space to support the work. Identify
types of hardware, software, and network connec-
tions. At this point, the relative position of spaces,

objects, and people is what matters. Whether an object is on the left
or right is irrelevant; whether the user can reach it without getting up
is what matters. When deciding how to interpret placement always
consider the actual usage of objects, not their formal role. An in-box
with gum wrappers and empty soda cans in it is a trash can.

Once the large structures have been identified and cataloged, the
model is open to another layer of inquiry (Figure 9.18). Sites are large

and hard for individual users to change much, so
they suggest constraints a system must live with and
problems it might overcome. Identify these and
write them on the model. But workplaces are much
more malleable and reveal how people think about
their work. The way people lay things out represents

their attempt to build a physical environment that mirrors the way
they do their jobs. When people do similar work, in a similar culture,
to accomplish similar jobs, they re-create the same structures to sup-
port it. When telephones, calendars, and address books are repeatedly
collected in one corner of the desk, it suggests a place for communica-
tions and coordination as a common theme. It suggests that a tool
supporting coordination had better include finding people, talking to
people, and scheduling work with people, since the physical model
revealed that these are all part of the same task. Write these insights
directly on the model as well.

Movement through a space is also driven by the needs of the work,
and we identify movement on the physical models when it is relevant
to the project focus (Figure 9.19)- Movement of people through space

and movement of documents around an office are
both useful to represent. The movement of people
through space shows what the system must allow for
and suggests opportunities to reduce the need to
walk around. Movement of things in the course of

Consolidating physical models 187

Reference material Workstation

Easy arm's reach [i>ĵ _

Phone and l | |
communications L~

Rolodex

in-box

Communications

{Really a trash can;
trash can behind)

Gum wrappers,
soda cans—

no real documents Communications Reference
JL Workstation center material -^—*—-±

In-box
Out of easy
arm's reach

^ u%
CB

± H
Rolodex i

Phone and where people drop

communications documents off

Drop-off place

(Trash can
behind)

C e n t e r Where people drop Trash can

documents off * blueprint
Drop-off place

F I G U R E 9 .1 8

holder

Inquiring into usage and structure of space

Door

doing work makes the sequence of work physical, highlighting transi-
tion points in the sequence when an artifact moves from one place to
the next. Draw the movement on the models.

When all the spaces and artifacts are identified and examined, you
are ready to create a consolidated model (Figure 9.20). Draw a single
model, showing one instance of each common
space. Where possible, use a single picture to show
the structure of that space and things within it. For
a system design focus, ignore aspects of the environ-
ment that do not matter to the work. Absolute dis-
tance from the worker doesn't matter; whether
things are ready to hand does. Whether things are to the left or right
doesnt matter. Potted plants don't matter. Where artifacts and tools
really are in different places, we show them in all the places they
might be—so we show a printer in the office and down the hall. The

Draw the model to reveal
the issues the team should
talk about

188 Chapter 9 Creating One View of the Customer

Gets worked on

,. . * , Item dropped
Item picked tt. ^ ,

, i off by coworker
up by coworker J

F I G U R E 9 . 1 9 Movement through a space.

consolidated physical model shows the common structure and all the
variations in that structure across users.

S T E P S

Group the physical models by type of place.
Then walk each model in turn, identifying the different places in the model. Label
each place with name and intent.
For each type of place, identify common structure. Show where the artifacts and tools
appear in the place.
Look at movement on each of the individual models.

Build a consolidated model showing all the parts and their structure. Carry over
intents, usage, and breakdowns from the individual models. Write any insights on the
model.

Consolidating physical models 189

Reference materia

Empty space for current work-*.

Gets worked on Workstation

Communications
w center

Item picked
up by coworker Item dropped

off by coworker

Never in-your-face;
always accessible

from doer

F I G U R E 9 . 2 0 A consolidated physical model.

The consolidated physical model is a single model that shows the
common issues imposed by the physical environment. It shows the
hardware and software used by people in its context of use, the kind
of access and movement allowed by the physical environment, and
the constraints that affect people across the customer population. If a
system does not live within these constraints or provide ways to over-
come them, it will not be successful. Businesses studying their own
work practice can make good use of the consolidated physical model
not only to work around constraints of the current physical plant,
but also to assist in designing new buildings and building layouts.

190 Chapter 9 Creating One View of the Customer

For these projects, system design can include redesign of the walls
around people.

The consolidated physical models also show the common strate-
gies in how people structure their environment to support work. This

structuring provides clues to how people think

The physical model
shows how the physical
environment supports and
constrains work

about and organize their work. A system that incor-
porates this organization has a better chance of
being acceptable to users and supporting the work
well. And the consolidated physical model shows
how people and things move through the work-
place, indicating the stages of work process that a

system may support or eliminate.
A physical model is particularly important whenever the work to

be supported involves multiple places or movement between places.
This is a broad set of problems: even writing is printed on a printer
(usually in another room), using materials that had to be collected
(usually from another place), for review by one or more other people
(who usually sit somewhere else). So even if the primary job is station-
ary, the whole job taken together may interact with the physical envi-
ronment in interesting ways. Anytime the job includes handing work
off between groups, or coordinating between multiple people, the
physical model will be interesting for seeing how the groups transcend
or manage physical separation. It will force the design team to be real
about the impact a design direction will have. When the job is sta-
tionary and doesn't interact with others in other places, how things are
clustered and used in the workplace reveals thought patterns and dis-
tinctions relevant to the system. Building physical models of each
space important to the work reveals this structure and gives important
clues to how people think.

CONSOLIDATING CULTURAL

MODELS

The consolidated cultural model shows the common aspects of culture
that pertain across the customer population. It is an index of issues that
matter to the people doing the work—what they care about, how they
think about themselves and the jobs they do, and what constraints and

Consolidating cultural models 191

policy they operate under. The consolidated cultural model can be cru-
cial to choosing the direction a design should take. Do system man-
agers like running around to do their job? Then dont
try to tie them to their desks. Either make them a
portable system, or make their application quick to
get in and out of. Are salespeople closely monitored?
Then either make it easier for them to report their
actions so they spend less time on it, or redesign
their organization so they have more independence. Are customers
closely regulated by the government? Then make producing the
required documentation simple. These are the kinds of issues addressed
by the cultural model. It indicates a direction for the design, and it
shows within that direction what constraints have to be accounted for.

Every organization has its own culture—its own ways of doing
things and its own attitudes about the world and the work it does. Yet
these differences exist within severely restricted lim-
its. Any environmental testing lab will be strongly
influenced by the Environmental Protection Agency
in the United States. Any computer hardware maker
is affected by the competitive and fast-paced nature
of the business. Any service industry has to worry
about reducing turnaround time on their service because turnaround
time is money in such a business. The nature of the business itself cre-
ates many of the pressures on an organization.

Within the organization, the same kind of repetitive patterns
emerge. Any organization that combines watchdog and service re-
sponsibilities creates a web of influences and attitudes around them.
Purchasing, for example, both helps you get what you need and makes
sure you follow approved procedures. Internal PC support both keeps
your machine running and tries to make you run standard configura-
tions and standard tools. Whether the service or watchdog aspects of
the organization predominate, a pattern of interpersonal friction,
influence, and pushback appears.

Even between people and work groups, we find repeating pat-
terns of influence. Networks in companies are typically global these
days, which means it is the working day for some
part of the network all the time. Often 24-hour
maintenance is provided by handing off responsibil-
ity rather than working three shifts. This shows up

The cultural model reveals
common values, friction,
andpolicy

Culture is not unique
within populations doing
common work practice

Even patterns of friction
repeat across businesses

192 Chapter 9 Creating One View of the Customer

Firsty find all the

influencers

Then, add unique

influences between

influencers

as an interdependency on the cultural model. Asking a secretary to han-
dle ongoing coordination of all aspects of an office is a common strategy
for getting work done, but it creates a relationship of nagging and help-
ing out in one direction, and requests and dependency in the other.

The first step of consolidating cultural models is to walk through
each individual model, cataloging and grouping influencers (bubbles).

We group influencers when they have the same kind
of cultural influence, guided by our focus. So, for
most purposes, regulatory agencies can be grouped
together—but in the United States, a pharmaceuti-
cal company is so intertwined with the Food and

Drug Administration that we might keep them separate from other
regulatory agencies. If we are supporting system management, we
might group all clients together—but if we notice that there's a special
relationship to client management, we might keep them separate. If
we are modeling an internal client, we generally keep the departments
separate and use their real names so we can see the real interaction
between them. We keep an eye on the influences—if we'd be prone to
group an influencer with others, but notice that the actual influences
are very different, we may choose to keep it separate so we can see the
difference. After identifying and grouping the influencers across all
models, we lay them out on the consolidated model, adjusting them
to show relationships and overall direction of influence cleanly (Figure
9.21).

Next we consolidate influences. We walk through the instances
again, collecting all the influences between each pair of influencers.

When we've collected them all, we do a quick sort
to get rid of duplicates and near-duplicates. The
remaining influences are written on the consolidated
model (Figure 9.22). As we go, we settle on wording
that reveals the emotional tone of the influence and
get rid of information about communication flow

that wandered onto this model (a common error).
Every organization has its own culture and attitude about the

"right way" to do business. This culture may be promoted directly by
management or may be pervasive, with no clear source. We some-
times find it useful to represent both cultures on the consolidated
model (Figure 9.23). The model will show both where the culture is

Consolidating cultural models 193

User
management

Department
XYZ users

U3
(System

administrator)

F I G U R E 9 .21 Identifying common influencers.

common across instances and where it differs. For example, some
companies are totally customer-driven, while others
appear not to know customers exist. The consolidat-
ed cultural model represents the issue and either
shows the common attitude across the population or
the variety of differing positions. Figure 9.24 shows
a complete consolidated cultural model.

The cultural model is one of the easiest to consolidate—it s usual-
ly fairly clear what goes together on the model. But the impact of the
model is very great. The consolidated cultural model takes a bunch of

Keep variation across

business or national

cultures

194 Chapter 9 Creating One View of the Customer

F I G U R E 9 . 2 2 Consolidating influences.

S T E P S

• Catalog influencers from the individual models.

• Group influencers who constrain the work in the same way.

• Collect influences from the individual models. Group by the pair of influencers they
go between.

• Sort each group of influences, eliminating duplicates.
• Draw the final model, showing all unique influencers and influences. Copy over any

breakdowns.

Consolidating cultural models 195

Corporate culture Corporate culture

Be prepared to justify vour expenses

\

You get the reliability you pay tor

F I G U R E 9 . 2 3 Two cultural attitudes toward money.

disconnected anecdotes and reveals the common themes and issues
that a whole customer population cares about. By addressing these
primary values, a system can distinguish itself from its competitors.
The design team can address the issues, and the marketing team can
use them to highlight benefits people really care about. Then the rest
of the cultural model shows how to keep the system from trespassing
on the customers' way of doing business either by violating a value or
by failing to fit into the user's work style or environment.

The cultural model is always important when a system is designed
for an internal organization or group. It's critical when characterizing
a market—it shows what the market cares about and
what pervasive influences they have to respond to.
Its also important when the work being supported
involves multiple groups of people interacting—the
way people push back on each other shows up in the
cultural model. The model is less important when
the project is narrowly focused on the work of an individual; in this
case, the few cultural issues of the user's values and self-image can be
collected on the affinity.

The cultural model reveals
the important values
to address

Reduce staff and budget, or if you need it, buy it
^Simplify the configuration you support

VD

D

p

F I G U R E 9 . 2 4 Consolidated cultural model.

The thought process of consolidation 197

THE THOUGHT PROCESS
OF CONSOLIDATION

Looking back over the different kinds of consolidation, it s apparent
that the same kind of thinking process drives them all. We collect the
data points of an affinity across users and build
them up into groups. We organize responsibilities
from different users into roles on the flow. We col-
lect work steps and group them into abstract steps
and intents. We collect and group parts of artifacts
and places in the physical environment. And we col-
lect influencers and influences in the cultural model. The detailed
items say what to pay attention to; inquiry into each item reveals
meaning for the project focus and how to group it with others. Out of
that comes common structure and meaning.

Taken together, the consolidated models provide the detail about
work needed to inform system design. Out of these models a design
team can draw implications that guide design.

The customer s intent is the first and most critical implication to
draw from the models. Sequence models show what the customer is
trying to do and how they go about doing it. Artifact and physical
models identify additional intents from the structures people create.
The affinity shows intents directly. And the cultural model shows why
people care—the constraints and values that are the reasons why an
intent is important to customers. If designers can invent ways people
can achieve their intent more directly, they streamline the work and
reduce unnecessary steps.

People achieve their intents by putting strategies in place. The flow
model reveals strategies for breaking up the work into organized units
across people. The affinity collects strategies and shows how they re-
late to other work issues. The sequences reveal alternate strategies used
to achieve the same intent. Designers can build these strategies into
their systems or choose to improve on them.

Some strategies are made concrete in structure. Grouping tools
into a cluster, separating work into piles, and organizing notes on a
page are all different structures that make work strategies possible.
These structures can be re-created in an online system when they are
useful; when not, the system can provide better alternatives.

Induction reveals the
pattern and meaning
hidden in work instances

198 Chapter 9 Creating One View of the Customer

Useful design data reveals
the intent, strategy,
structure, concepts, and
mind-set of the user

Structures also represent concepts. Concepts are created by people to
help them manage and think about their work. When they create arti-

facts in the course of doing work, they naturally repre-
sent the concepts in the artifact. The affinity names
and highlights additional concepts. With an under-
standing of the concepts that organize work, designers
can structure systems to implement and communicate
in terms of those concepts. Building the users con-
cepts into the system makes it easier to learn and use.

Finally, all these implications are affected by the customer's mind-
set. The cultural model shows mind-set explicitly, but it can also be
inferred from the physical environment and the detailed steps that
people take in accomplishing a task. Understanding the customer's
mind-set points designers at the important issues to solve and ensures
that the final system will fit with the customer s work and culture.

Understanding intent, strategy, structure, concepts, and mind-set
are key to effective process and system design. The work models make
these aspects of work visible to designers. Each model captures a
unique perspective, and each shows the common pattern of work and
the variation across a customer population. They make the customer
real to the engineer—so real that when, at two in the morning, he or
she must make a design decision one way or another, the consolidated
customer work has sufficient weight that there's a chance that the
decision will be made in favor of the customer.

Communicating
to the Organization

There's no point in gathering customer data if you don't use it for
design. We've talked about how to bring a design team to a shared

understanding of the customer, but teams are em-
bedded in larger organizations. The design team can-
not include everyone who cares about the result.
There are the rest of the engineers on the project
who have to believe in the system enough to code it.
There are the three project teams working on systems
that have to interface to yours. There's your manager, and his manager,
and the very scary CEO who seems to read all your email. There's the
marketing and product-planning department, who tend to be skeptical
of ideas coming out of engineering. There's the sales force (of a com-
mercial product), which needs to understand what makes the new
product worth selling. And there are the customers (of an internal sys-
tem), who need to be convinced that the new system will improve their
lives. All these groups need to know what's going on, and many of
them have important contributions to make to the design of the sys-
tem. Projects often fail because their organizations don't understand or
believe in what they are doing and don't support them.

A cross-functional design team might naturally include members
from many of these organizational functions. But
we've learned that while having a person from a
group on a team is useful to incorporate that group's
perspective in the design, it doesn't communicate
what the team is doing back to the group effectively,
and it doesn't give the group the sense that it can
influence the design. It is just too hard for individuals

Communicating to people

who have a stake in the

project is part of the job

A cross-functional team

doesnt guarantee

communication back

to the functions

200 Chapter 10 Communicating to the Organization

People need to manipulate
data to make it their own

to carry the whole burden of communication by themselves. So com-
munication back to each group remains the responsibility of the
whole project. Projects that do not assume this responsibility—that
expect the other groups to find out what they are doing and comment
if they care to—do not do well.

The communication that a project creates must be designed to
inform each external group what the project is doing, to provide
details that allow the group to understand the projects design direc-
tion, and to provide meaningful ways for the group to comment and
contribute ideas with knowledge of the customer data. Each organiza-
tion has its own perspective, expertise, and interests. This suggests
multiple strategies to communicate to each group in a different way.
The message needs to be tailored to the audience—what works for
marketing may not be effective with programmers. There are many
forms of communication open to the team, who must incorporate
each group into the design process in the appropriate way

COMMUNICATION TECHNIQUES

A good communication mechanism includes a hook, an activity that
forces people to interact with the data. People don't incorporate new

information well if all they do is hear it or read it.
To get customer data in properly, people need to
manipulate it, use it, or in some way engage with it.
They need to make it their own. Then they will be
able to offer suggestions and criticism based on the

data, not just their own preferences. A good communication mecha-
nism also provides for immediate feedback. Contributing ideas and
finding holes helps people stay engaged. People find it easier to buy
into the design when they have contributed to it, and the contribu-
tions themselves improve the design. Finally, a good communication
mechanism will reveal the customer work practice (or, later, the sys-
tem design) as a coherent whole, not as individual, unrelated points.
It encourages systemic thought, understanding and responding to the
whole work practice together. The artifacts of Contextual Design sup-
port these goals naturally, and there are a few techniques that are gen-
erally useful.

Communication techniques 201

WALKING THE AFFINITY

The affinity diagram was structured to tell the story of the customer—
to arrange all the customer data to present the issues and concerns
coherently. "Walking" the affinity gives the team a chance to review
and think about this story. It can be done immediately after building it
or right before doing the visioning. It's the team's first chance to see the
whole scope of data together and to consider how to respond with a
coherent design solution.

Anyone can walk the affinity: the whole team together, individual
members on their own, or outsiders, interested parties, and other
teams building related products. Each person reads
the affinity silently. Often the team will designate an
appropriate starting point, a place in the affinity
that introduces the major issues well. To make the
affinity easier to digest, teams do well to spend a lit-
tle time cleaning it up. Some decorate the large divi-
sions of the affinity with pictures, clip art, or artifacts illustrating the
issue that part addresses. Groups can be directed to those parts of the
affinity most immediately relevant to them, and they can work from
there to the rest of the wall. Seeing the part they care about gets them
interested; from there, they can see how it hooks into the larger work
context.

Participants read starting from the green, then the pinks, then the
blues, so they start with the high-level statement of an issue and work
down to the specifics. They read the individual notes as necessary to
get examples and details summarized in the blues. If several people are
reading at once, they read quietly, like people in a museum; each per-
son is following their own thread, building their own understanding of
the data, and loud discussion would be disruptive.

As they read, each reader writes two kinds of notes: holes and
design ideas. One records additional information and questions the
reader would like answered. These are holes the
team might fill in future interviews. The other
records ideas for responding to the data. Initially,
these ideas will be vague and respond to specific
points, but as the readers see more and more of the
scope of the data, their ideas will get more detailed
and cover more of the work. The readers try to build up their ideas so
that rather than responding only to a single blue or pink, they end up

Walk the wall to balance
individual thinking with
team discussion

The challenge: address the
whole wall of issues with
a single design idea

202 Chapter 10 Communicating to the Organization

with ideas for how to address entire greens—or the whole wall. These
notes are posted on the affinity next to the part of the affinity that
they respond to. On a second pass, people can read each others notes
and see how others are responding to the data.

Writing design ideas on the wall is a way of interacting with the
data. It provides a way to capture design ideas so that the design team
can act on them, and everyone can feel they contributed something to
the design. Posting ideas clears people's heads to go on to something
new or to build an idea up into something larger. The nature of the
affinity pushes people toward systemic thought. The first ideas may
tend to respond to single notes with point fixes to small problems.
But as people see more and more of the whole work practice revealed
by the affinity, they naturally start to weave together themes and de-
velop ideas that address larger aspects of the work expressed in the
pink and green labels.

WALKING THE CONSOLIDATED MODELS

Similar to walking the affinity, walking the consolidated models is a
way for people to engage with the work models. In pairs, people read
through and talk about each work model in turn. They write issues on
Post-its: key problems a design might address, constraints a design
might account for, or a role the design should support (we will go into
more detail about how to identify design issues using models in Chap-
ter 18). When everyone has walked all models, the team shares all the
issues collected for each model in turn. Some groups benefit from
games of various sorts; for example, if participants work in the organi-
zation that the models represent, they may be challenged to find them-
selves in the models. Participants may be asked to answer three ques-
tions by finding the answers in the models. The models might be
posted in the customers' own workplace, so they can annotate and cor-
rect them as they do the work the models describe. This is entertain-
ing, and it gives participants more reasons for engaging with the data.

The models promote systemic thought by their
very nature. By showing how the work hangs togeth-

MoaeIs promote systemic er? they suggest thinking about coherent solutions.
thought about work and Each model does take its own perspective on the
the system response work, but each perspective is a slice of the whole of

I work practice: the cultural model shows everything

Communication techniques 203

about culture; the flow model shows everything about communication
and coordination. Looking across them quickly the brain synthesizes
an understanding of how the whole work practice fits together. Partici-
pants can see, respond to, and capture their ideas and issues using the
model to drive their thinking about the work and about the systems
that might support work better.

TOURING T H E DESIG N R O OM

Using the models and affinity as communication tools is much more
powerful if the team has a design room. Any team that does real, face-
to-face, creative work needs a space of their own.
Creative work requires props—the sketches and
drawings capturing people's thought and discussion,
of which work models are just one example. Trying
to meet in conference rooms is unsatisfactory
because all this paraphernalia must be cleaned out of the way of the
people who have the room booked next. Individual offices are usually
too small for a team and its data. A design room dedicated to a team
means they can interrupt a conversation when they need to and come
back to it with the context of their conversation still intact. It means
they can keep the customer data on the wall and in front of their face.
Some teams have even chosen to stay in their rooms during the cod-
ing phase of their projects—they had the data and use cases on the
wall and could coordinate with each other whenever they needed to.

A team room acts as a mechanism for communicating to the rest
of the organization. Because the team's data is on the walls, walking
the affinity or consolidated models is easy. Anyone walking into the
room is immediately surrounded by the customer. Teams can and do
design the room to communicate, using clip art and graphics to high-
light portions of the wall, leaving Post-its with good ideas up, and so
forth (Figure 10.1).

Not only does the data on the wall help communicate, it becomes
the team's public memory and conscience. It's too
hard to keep every aspect of work practice in your
head at once—you will inevitably forget something.
The models and affinity keep all the parts cataloged
and available for quick reference. Though it's
worthwhile to create online versions of the affinity

A team room lets you keep
your customer in your face

A team room is your
public memory and
conscience

Chapter 10 Communicating to the Organization

F I G U R E fO.1 A design room. The affinity diagram and work models on the
walls keep the customer data instantly available for reference and sharing with others.

and consolidated models because online versions are harder to lose and
easier to share with remote sites, the paper models are always the prima-
ry design tool. Keeping them on the wall in paper means each model
can be much bigger than a screen, incorporating more data and allow-
ing more people to gather around them at once. What's more, people
have a spatial sense that helps keep the data organized. Its common for
someone referring to customer data to back up a claim by pointing at
part of an affinity that covers all four walls. They nearly always point to
the right place.

TAILORING THE LANGUAGE

TO THE AUDIENCE

Each group that a project might need to deal with has its own issues
and concerns, its own way of speaking, and a different direction it can
take the team's knowledge. In each case, the team needs ways to com-
municate that are tailored to the concerns and work style of the
group. To understand those needs, we'll discuss some of the primary
groups we've dealt with. Use this discussion to think about different
groups' needs and how best to talk to them.

Tailoring the language to the audience 205

M A R K E T I N G

Marketing is responsible for ensuring a product meets a need for
which people will pay money and for seeing that money actually is
made on that product. When thinking about the customer, marketers
tend to focus on demographics rather than work practice—what kind
of customers make up the market, who has money to spend, and so
forth. Marketing departments are responsible for defining what a
product will do, but not for defining its structure in detail. Marketers
are not designers—its not their job—and they do not need to under-
stand a product as a coherent system in the way designers do. Mar-
keters are used to communications such as feature/benefit lists, lists of
customer needs, requirements lists, wish lists, and so on. These lists
emphasize individual points over seeing how things hang together.

Yet marketing is a major primary beneficiary of work models. As we
discussed in Chapter 8, work models can be their map to the market
they wish to dominate. For marketing, the affinity,
flow model, and cultural model are the primary tools
The affinity elevates key issues that cross the market,
acting almost like a checklist of issues to address. The
cultural model reveals the attitudes and pressures cen-
tral to developing a market message—it's easiest to
sell to someone when you know what they care about. The flow model
is the primary map of the market, allowing marketing to see what roles
they currently cover and how they might grow their product offering.

The primary issue with marketing is to see the real customers they
need to sell to in the abstract representations of the work models. The
roles on a flow don't reveal who the flesh-and-blood people playing
the role are. It's important when talking to marketing to show how
roles map to individuals in terms of the demographics they care
about: young or old, man or woman, type of industry, and so forth.
Marketing needs to see this to know how to build market messages
that speak to the different kinds of customers.

A helpful way to communicate to marketing is through scenarios.
A scenario is like the story of a single customer, but the "customer" is
carefully designed to typify the market. A story is written about this
customer, describing who they are, what they do, and how they work.
The details of their lives and their work are chosen to include all the
major findings from the consolidated models. (When it would be

Help marketing see the
real people they are selling
to and their story

206 Chapter 10 Communicating to the Organization

nonsensical to throw all these details into one story, or when it's
important to show that the market comprises different types of users,
several scenarios can be written.) The story should be no more than a
page. Building a scenario is a useful exercise—it forces you to be con-
crete about what you understand and to prioritize. You can't put every
detail from the models in the scenario, so you have to include only the
most critical and relevant aspects of work.

C U S T O M E R S

Communicating to external customers is marketing's job. But when
the customer is internal, it becomes the design team's job. They have to
make the customer organization—not just those customers on the de-
sign team—partners in redesigning the work and designing the system
because it's the customers' lives they are changing. Redesigning work
practice is much more direct, and potentially more extensive, because
the design team can work directly with the customers. Including cus-
tomers in the design team is important, but only a few can actually be
on the team. The whole rest of the organization needs to be included
in the design somehow.

It's difficult to include the rest of the organization because it's not
their job to design systems. In fact, it's not even their job to design

their job. It's their job to do their job—anything else

Help customers see their

own work practice so they

can redesign it

is a distraction. So absconding with large amounts
of customers' time is usually not possible. Working
through customer representatives—who have given
up doing the job in order to be a representative—is
also not ideal, since someone who isn't doing the job

has a hard time speaking for the whole organization.
Because people do not generally reflect on the work they do, consoli-

dated models can be invaluable in speaking back to the customer or-
ganization about how they work. If work practice is as invisible to those
who do it as water is to a fish, consolidations lift the customers out of the
fishbowl so they can see the water. Then, they can use their unarticulated
knowledge to spot errors and holes and to add more information to the
models. They can decide whether they like what they see or whether
there are breakdowns that ought to be fixed. This is the basis for discus-
sions, not just about what system to design, but about what new work
practice to put in place in the organization for systems to enable.

Tailoring the language to the audience 207

Customers benefit from walking the affinity and models, but
other kinds of participation are important as well. Interviews with a
broad cross section of the customer organization are
important, not just for the data, but so everyone
knows they have been heard. Groups within the cus-
tomer organization can walk the affinity and mod-
els. The models can be hung in the customer's work
environment for people to extend and correct as they work. The mod-
els can act as a focus for process discussions among people in the cus-
tomer organization and with the management of the customer organi-
zation. Contextual Design puts internal customers on the design team
and includes customer contact at every phase. This involvement can
and should be used to drive the design, to generate feedback, and to
build excitement and involvement in the new system.

ENGINEERING

Engineers are designers. They understand the importance of seeing
how things hook together. However, there are two problems with en-
gineers: they have a long history of working with marketing, who
worry more about point features than about system design, and they
are overfocused on code, technology, and "clean" design. We'll take
these in turn.

Because engineers traditionally get direction from marketing, they
are used to directions of the form "build a system that does this"—
specifying what the overall system is to do, but leaving open its struc-
ture and specific features. They prefer this, viewing the structural
design of the system as their domain. Engineers are used to being the
final sanity check. They view it as their job to ensure that all the indi-
vidual mandated features can be combined into something that hangs
together for the customer.

On the other hand, engineers have their own focus on technology
and what makes a clean design. Just as marketing tends to define
products from demographics because those are the
tools available to them, engineering tends to design
for clean implementation. Without a clear, explicit
representation of work practice to act as a counter-
weight, they inevitably push for clean design in the
implementation. This doesn't necessarily translate
into simplicity; it may mean building in more flexi-

Use multiple techniques to
involve customers

Customer data
counterbalances the urge
for technical elegance

208 Chapter 10 Communicating to the Organization

bility than needed because each feature might possibly be needed by
someone.

The affinity and work models give engineering exactly the infor-
mation they need to structure a product. They not only learn who the
customer is and what their issues are from affinity, flow, and cultural
models, they also learn exactly how their customers think and work
from the sequence and artifact models. This gives them a ground on
which to design a system, basing design decisions on concrete data.
(How to do this is the subject of the remainder of this book.) The
engineers on a Contextual Design team are generally happy with the
data and know how to build on it.

However, it's not possible to put the whole engineering organiza-
tion on the design team, and those engineers who are not on the core

design team discover that their role is more limited

Walk data to give
implementers structural
information to guide
design

Walk data to help
engineers avoid one-shot
solutions

than it used to be. It s in the design of the system
structure that the customer's work practice is re-
designed, so this design must be based on consoli-
dated models, not done by individual engineers. No
longer are engineers given function lists that they are
responsible for weaving into a coherent system. The

new rules of the game are that all decisions are based on customer
data. The design team produces a systemic design based at every point
on customer data represented in consolidated models. (And, as we'll
see in Chapter 17 on prototyping, the design is checked with cus-
tomers all along the way.) The engineers new role is to design and
code the best implementation of the system design that they can,
using the data, rather than their own preferences, to fill any design
holes. Engineers who embrace this role are ecstatic—they hand off the
job of understanding the user and structuring the design and focus all
their efforts on the technology they love. Others have a harder time
adjusting.

Engineers benefit most from exercises that force them to interact
with the data. Engineers are prone to inventing immediately from the

data. They move so quickly from fact to design that
they need ways to capture their ideas as they go.
They also need to be moved from responding imme-
diately to an individual piece of customer data with
a single feature, to understanding the whole work
practice and designing whole system structures in

Tailoring the language to the audience 209

response. Walking the affinity and work models are good ways for
them to engage the data and push to a systemic response.

MANAGEMENT

Managers' first and primary responsibility is to ensure that the system
gets out the door. Their focus is therefore less on exactly what features
are shipped and more on whether the promised features are being
completed on time, with acceptable quality. But managers have little
direct control over a project—they depend on others to do the design
and write the code. They have little visibility into the insides of a proj-
ect and often do not discover that the whole project is in disarray
until the day before a milestone is to be met, when they are told that
the team is three months behind. The prime concern for management
is milestones and deliverables because these are the only handles they
have on the project. If a deliverable is completed at the planned date,
the project is okay; otherwise, there's cause for concern.

Management is under intense pressure to ship fast. Most IT
departments are running under the perception that they have up to a
two-year backlog. For a commercial product, every
week that a product slips is a week of sales irretriev-
ably lost. But management typically discovers that a
project is in trouble only when it fails to deliver
something expected of it. For these reasons, design
groups in the computer industry are under intense
pressure to deliver, and code is the most visible deliverable. Any
process that threatens to stretch out the time before code is delivered
has to fight this pressure.

Everyone recognizes that determining what to build before you
start building saves time during coding. But it's hard to take that time
when there's such pressure to ship and when understanding the cus-
tomer doesn't produce anything concrete. Introducing a new deliver-
able—the consolidations—demonstrates the team's progress to the
organization. Furthermore, these deliverables are of real value in
themselves. They provide the map of the market that drives product
strategies, or the map of the organization that makes redesigning the
organization possible.

The favorite way of communicating the customer knowledge to
management is through a slide show. A slide show is information

Help management see

progress by using models

as deliverables

210 Chapter 10 Communicating to the Organization

packaged for immediate comprehension and action. For most purpos-
es, management doesn't need to work with the data in detail. They

need to understand overall themes and primary

Talk to managers in their
language: slide shows
and UI mock-ups

Put usability people on
the team—they can be
experts in customer data

insights. The main use for the detailed structure of
work practice is to design the system, which isn't
management's job. Scenarios are also useful ways to
communicate with management, since they present
information in brief, concrete ways.

Management has the right to demand clear, complete consolida-
tions as one milestone in a project. This defines a deliverable that can
indicate whether a team is making progress during the amorphous
phase of initial design. It promotes quality, by ensuring that the team
has developed a reasonably complete understanding of their customer
and has it represented in a form that they can keep going back to in
order to check their designs. And it ensures that the team captures
their knowledge in a form other teams can learn from.

U S A B I L I T Y

Usability groups are not directly responsible for the design, but they
perceive themselves to be left holding the bag if the design is flawed. In
this they are like test, human factors, or quality control groups. All these
groups are used to holding the voice of the customer for the design
process. They have direct, firsthand experience of the problems caused
by a flawed system, but no good way to feed that experience into the
design process early enough for it to be useful. They are typically
brought in at the tail end of the cycle, after the design is finished and
much of the product coded. At this point they are asked to identify easy
fixes to a system that may be fundamentally flawed. The process sets
them up to be in opposition to the engineers who built the product.

These are good people to include in the design team from the begin-
ning. Including them makes their point of view available even in the ini-
tial stages of understanding the customer. They have experience under-

standing issues from the customer's point of view.
They will see different things in the customer data and
teach other designers this perspective. They can ensure
that the usability problems they've seen don't get
designed into the product. And incorporating them
into the team short-circuits the organizational conflict

Models manage the conversation

between the groups, giving them a common goal to work toward. If
putting them on the team is impossible, include them in certain working
sessions—interpreting an interview or building the affinity.

There's another reason to include usability people on the team.
They have usually been the primary focus for working with the cus-
tomer on design problems, and they have developed techniques and
expertise in working with customers. A new process that appears to
cut them out of the loop can appear threatening. Making them part of
the process from the beginning ensures they have a place in the new
way of doing things and takes advantage of the skill they have in
working directly with customers.

Once the overall design of the system is decided, there's still work in
getting the details right and in defining a test plan for the system. The
consolidated models define appropriate test cases; the roles indicate
what customers should be part of the test. Up-front work on the system
design complements usability testing; it doesn't replace it. As we'll see in
the next sections, these tasks build on the design work of the team, and
that work starts with the consolidated models. When usability and test
people are on the team, they have a head start on their tasks.

MODELS MANAGE THE
CONVERSATION

These are some of the main people a design team needs to communi-
cate with. Each group has their own perspective and their own set of
issues, and each group will use the models in a different way. Some
groups, like management, really do best with an abstraction from the
consolidations showing the key points. Other groups need to under-
stand the consolidations at a very detailed level. We suggest different
mechanisms for learning the data, allowing each group to interact with
the data in a congenial way and to get from it exactly what they need.

An affinity diagram and coherent set of consolidated models don't
just collect knowledge, they organize that knowledge in a way that
reveals how work hangs together. They push design teams to think, not
about a single task or problem in isolation, but in its context of interre-
lationships with all the other parts of the customer's work. Partly
because of the intense time pressure and partly just because thinking

212 Chapter 10 Communicating to the Organization

about a whole customer population is hard to do, designers are often
more comfortable designing one-shot solutions to single customer

problems. See a need, design a fix, code it in—it's

Dont live in an ivory
tower—keep your
process open

The goal is to design a
whole systewiy not fixa
point problem

simple, fast, and manageable conceptually. But sys-
tems designed this way get more and more unwieldy
over time. Each fix is a single feature, added to the
system without being fully integrated. Soon there are
several ways to do every major function, dozens of

windows and panes to handle every special case, and hundreds of cus-
tomization options. The system becomes hard to use and impossible to
learn. Not all complexity can be blamed on one-shot thinking—some-
times the work is complex—but the more complex the work, the more
critical it is to maintain a coherent representation. It's inevitable that
designers will design point fixes as soon as they hear a problem. By
capturing individual ideas as they occur, Contextual Design allows for
these one-shot fixes (and they can be useful in short-term work), but
they are not coherent solutions. We capture the ideas and provide a
place in the process where they can be collected and used as fodder for
inventing a system solution. But that isn't until after consolidation has
brought the whole work problem into a single focus.

Consolidation is the culmination of all the hard work of under-
standing the customer. The individual interviews brought designers

face-to-face with the reality of customers' work.
Interpretation sessions opened their eyes to all the
different insights and interpretations a single event
allows. Consolidation reveals the common pattern
and structure underlying the variations across peo-
ple. By doing so, it pushes people from one-shot,

feature thinking to systemic design. Seeing how the work is a coherent
whole enables a team to respond with a whole system that supports
that work. Equally important, consolidation teaches how to see pat-
tern and structure in masses of detail. This inductive thinking will
prove to be a skill we draw on again and again as we move from
understanding the customer into systems design.

Innovation from
Data

This page intentionally left blank

Work Redesign

When a design team invents a system, they aren't just putting bits
of software and hardware together to make a neat gadget. The

real invention of a design team is a new way for people to work. If
you're building a commercial product, you want to make a splash in
the market by offering a new, attractive, and desirable way to work. If
you're building an internal system, you're looking to transform the
business through the appropriate use of technology. Even the smallest
tool with the most limited effect on the work must fit into the larger
work practice. In every case, what makes a system interesting to its
users is the new work process it makes possible.

Though we introduced this perspective at the beginning of this
book, it's a startling change for most teams we work with. We've seen
how corporations split up the job of delivering a sys-
tem across multiple roles, each role focusing on its
own part of the problem. Engineers care about the
hardware and software technology; marketing cares
about how to sell to a market and build a product
business. Of course, these are important components of delivering a
system, but it's the work practice they enable that the customer cares
about. IT departments have an advantage here; having a closer rela-
tionship to their customers, they are more likely to be thinking about
how to support the whole business—and the recent focus on business
process reengineering pushes them more than ever into the domain of
thinking about the whole business.

Teams deliver work practice, but the way they deliver it is through a
system solution. That includes the system itself—the hardware and soft-
ware that constitute the tangible deliverable—but also includes docu-
mentation and training. An IT system may include changes to proce-
dures, policies, and organizational structure that enable the organization

Teams invent new work
practice, not tools

216 Chapter 11 Work Redesign

Teams deliver the

corporate response:

software, services, processes,

and delivery methods

to take advantage of the new system. A commercial system will include
additional services, support, delivery mechanisms, and the marketing
approach that communicates the benefits of the new work practice. All
these things together are the corporate response we introduced in Chapter
1. Though a different function is responsible for each part of the corpo-
rate response a corporation delivers, they are experienced by the cus-
tomer as different aspects of a single system. Poor customer support
affects the experience of quality as much as poor code.

This is the challenge for a design team: to come to an understand-
ing of customers' work and needs; to invent a new work practice that

customers will want and that will improve their
work; and to design a solution that brings together
the different functions to deliver a unified corporate
response. But just any response won't do. Today's
business puts a premium on thinking "out of the
box"—coming up with the creative solution to a
work practice problem that no one else has thought

of. For a commercial product, this can be the competitive edge that
makes it possible to dominate a market. Internal systems are looking
for the innovative work practice that will transform the work of the
business. In both cases, customer data is the key to innovation. Cus-
tomer data is also key to discovering the needs that no one knows how
to articulate, but that if you addressed, everyone would say, "Wow!
Someone finally got it right!"

CUSTOMER DATA DRIVES

INNOVATION

Innovators are immersed

in customers' work practice

The current cultural myth about how innovation happens is that some
brilliant person goes up a mountain, or into a garage, and invents

something new out of whole cloth. We've even heard
that one company kept their engineers away from
customers intentionally because they didn't want to
stifle innovation. But an examination of where bril-
liant ideas have actually come from suggests the

opposite is true: not only does working with customers not stifle
innovation, it is the most basic prerequisite.

Customer data drives innovation 217

Dan Bricklin designed VisiCalc, the first spreadsheet, while he
was taking accounting classes in business school (Beyer 1994). He saw
the tedious and mechanical work required to manage a paper spread-
sheet and realized that with his knowledge of computer systems, he
could automate the calculations while maintaining the spreadsheet
metaphor in the user interface. WordPerfect, one of the first of the
modern word processors, was invented when Alan Ashton and Bruce
Bastian were working downstairs from the secretaries who were their
customers. They would bring new ideas and new base levels upstairs
on a daily basis for the secretaries to try and comment on.

These people did not innovate by doing what their customers
asked them—no one was asking for an electronic spreadsheet. As we
discussed in Part 1, customers don't have a good,
articulated understanding of their own work. They
are focused on the day-to-day issues of doing their
jobs. What's more, they have only a limited under-
standing of what technology might do for them.
Rather than responding to explicit requests, we find
innovators immersed in the work culture of their prospective cus-
tomers. Innovators observe problems firsthand and use their technical
knowledge to recognize opportunities for using technology in ways
the customers themselves may not see. By talking with people
immersed in the work, building prototypes, and testing them out in
the workplace, innovators turn these ideas into working systems.
(We'll talk more about the role of prototyping in Part 6.)

The spreadsheet and WordPerfect examples also provide some
insight into what an innovation actually is. No innovation is ever totally
disconnected from what went before. Paper spread-

Innovators design for

needs that customers cant

articulate

Work transformation

comes from continuous

evolution

sheets already existed for VisiCalc to model; editors
and word processors existed before WordPerfect.
Many people are tempted to say, "Well then, that's
not real innovation"—as if these examples of successes
in the marketplace are somehow not real. This kind
of innovation, which builds on what went before to create a new class of
product and capture (for a time) a new market, is good enough for most
people. And it's absolutely dependent on using an understanding of the
current work situation to invent new ways of working.

But that doesn't mean that it's impossible for technology to trans-
form work; over time, the introduction of technology may completely

218 Chapter 11 Work Redesign

Design is invention

created by a team in

response to data

transform a work task. Spreadsheets have grown beyond anything
accountants envisioned 15 years ago. Word processing has very little
in common with the creation of documents with typewriters. Work
was transformed gradually, as people adopted the new invention and
began to explore its possibilities. They invented new ways of using the
invention, unforeseen by the inventors. Through their use and trans-
formation of the invention, people became partners in creating wholly
new ways of working. (It's through this process that products take
over markets. The early adopters show how the product might be used;
then as the product matures, it becomes easier for the larger market to
adopt it. Through continuing innovation that fits the product to the
market, the product becomes more likely to succeed [Moore 1991].)

Good inventors naturally follow the chain of reasoning outlined in
our discussion of interpretation in Chapter 3: see a fact about the

work; see why the fact matters for people in the
world; recognize the implications for bringing tech-
nology to bear on the work problem; and turn the
opportunity into a concrete design idea. The design
isn't explicit in the data. This is often a stumbling
block for those new to customer-centered design.

They expect that, with all this data, every aspect of the resulting
design will be found in the data they collected. In fact, specific design
ideas are rarely in the data; they are inventions created by the team in
response to the data. So the critical design skill at this point is to see
how the data guides, constrains, and suggests directions an invention
can respond to.

CREATIVE DESIGN INCORPORATES

DIVERSITY

Work is complex, multifaceted, and intricate with detail. How is a
design team to immerse itself in this detail so they can see and
respond to the work issues together? Each different consolidated
model puts a specific dimension of work into focus for the design
team; each model reveals problems and issues related to that dimen-
sion of work. Probing into one model after another in quick succes-
sion leads naturally to a synthesis of the issues across models. The

Creative design incorporates diversity 219

team can absorb one coherent aspect of work at a time, making this
complexity manageable. Discussing each model in turn begins a dia-
log about the data and what it means to the team

Creative and coherent
design accounts for the
complexity of real work

and develops a shared understanding of the data and
sense of direction for the design. In this way, work
models give the team a handle on the complexity of
work, encouraging them to respond to the work
practice as a whole, not only to isolated issues and
problems.

The work models introduce one kind of diversity. The different
perspectives on a cross-functional team introduce another. The skills
and perspective of the people on the team determine what kind of a
design they develop; everyone has a unique perspective and a unique
pool of technology to draw on. As we saw in the examples of inven-
tion above, it s the application and recombination of existing pieces of
technology to the work problem that make invention possible (see
Grandin [1996] for an excellent description of this process). So the
more different perspectives available to the team, the more design
options the team can consider. This is the thinking behind the Total
Quality Management movement: get the right skills in the room, and
you'll address the problems of all the parts of the organization.

The "technology" that's important to the team means more than
the hardware and software possibilities. Marketing has its technology
of packaging, product structure, and how to talk to
a market. Manufacturing has its technology of how
to build and deliver the physical product. Business
analysts have their technology of work process
thinking. What marketing sees isn't the same as
what development sees, and customer service has a
perspective different from either. Yet each of these perspectives is
important to delivering a coherent corporate response.

Creative design comes from a blending of these perspectives, the
different views on work provided by the models and the different
ways of seeing and bringing technology to bear provided by the peo-
ple. The challenge to the design process is in supporting the human
task of engaging with the models and other people, discussing what
the models reveal and all the ways the team might respond, and devel-
oping a unified response that the whole team can support. Through
the discussions, team members learn each other's perspectives and the

The diverse perspectives of

a cross-functional team

ensure creativity

220 Chapter 11 Work Redesign

Reduce interpersonal
friction through an
explicit invention process

skills and technical knowledge they bring to the table. As designers,
they reassemble the whole work practice in their minds and respond to
it systematically to keep the work and the corporate response coherent.

C O N T E X T U A L D E S I G N

I N T R O D U C E S A P R O C E S S F O R

I N V E N T I O N

But doing this discussion and synthesis, in a group, without arguing,
and in a reasonable amount of time depends on a clear process—a set
of concrete actions to take. That's what Contextual Design provides.
The team needs to immerse themselves in the data first, so inquiry
into the consolidated work models is the first step. Then Contextual
Design provides a visioning step, in which the team brainstorms new
work practice that addresses the issues they saw. But creative design is
hampered by agreeing too quickly. It's important that the design team
think widely, consider several alternatives including radical solutions,
before converging on a single approach. So the team develops multi-
ple solutions, pulling out different aspects of the work situation to
address. These different solutions are consolidated into one response
that incorporates the best ideas into a single unified corporate re-
sponse. And to be successful, this corporate response has to be tied
back down to reality. It has to fit with the customer's work in detail, it
has to be feasible, and the corporation has to have the skills and tech-
nology to deliver it. The different functions of the corporation can
each work out their part of the vision in parallel.

It s important that the process make these steps explicit. Much of
the argument within a team at this point typically looks like argu-

ments about features: "Sue wants to implement a
weekly coordination meeting among a district's sales
force. Can't she see that giving them all laptops
would be better?" But this isn't just an argument
about a feature; it's actually embedding a whole
chain of reasoning: What data would support one

idea over the other? How would each idea affect the work on a day-to-
day basis? What are the implications for the design? What goals or
values should the design achieve? And only then, which specific idea

Work redesign as a distinct design step 221

would work for this set of users? Giving the team time to think about
the different aspects of work and the implications for design both
makes it easier for the team to have the design conversation together
and makes the team more creative.

This is the goal of work redesign: to look across the different mod-
els and see a unified picture of work practice, to use the different team
perspectives to reveal the issues, and to use a wide exploration of multi-
ple possibilities to drive the invention of a creative design solution. A
good design process will define explicit steps for these activities.

WORK REDESIGN AS A DISTINCT

DESIGN STEP

WeVe described a step in the design process in which to do work
redesign, but how does it fit into the overall development process?
Where does the development of a corporate response tying together
all the parts of a complete customer solution fit in? The corporate
response drives requirements for software and hardware, but it also
drives requirements on the associated business processes, infrastruc-
ture, the marketing message, packaging, delivery, and associated ser-
vices. It's a much broader design than just saying what the software
will do. What s its relationship to the steps currently expected of engi-
neering teams?

Figure 11.1 shows the software life cycle typical in the industry
(Davis 1993). This life cycle starts with requirements gathering and
analysis and goes on with design of the software
implementation, followed by the implementation
itself. But analyzing classic requirements (see
"Unraveling the Software Process," below) shows
that software requirements embody the implications

Traditional requirements
assume changes to the work

of a new work redesign for the supporting software system. Because
requirements say what the system will do, they assume changes to the
work. Work redesign had to happen even in the traditional life cycle;
otherwise requirements could not be written. But if it s an implicit
step, with no process support, it's hard to see the work coherently,
hard to ensure that the design offers a coherent work practice, hard to
tie all parts of the corporate response together, and hard for the whole

222 Chapter 11 Work Redesign

Requirements
analysis

A > \

Software
design

> k i
Coding

A i
Testing

A Y

Operations

F I G U R E l l . l The traditional software life cycle.

Software engineering

User
needs

^J
System

requirements
analysis

System
design

Systems engineering

Software
requirements

analysis

<

Software
design

Software
• Code
• Test
• Integrate

1
Continued systems engineering involvement

Hardware
requirements

analysis

Hardware
design

>

Hardware
• Fabricate
• Test
• Integrate

F I G U R E 1 1 . 2 The systems development process.

team to understand and contribute. So Contextual Design makes the
work redesign step explicit—and systems development processes, such
as Figure 11.2, suggest how to do that (Keller and Shumate 1992).

Figure 11.2 shows the systems development process, which covers
the entire deliverable system, of which software is one component. (It
doesn t explicitly recognize the other parts of a corporate response.) In

Work redesign as a distinct design step 223

U N R A V E L I N G T H E S O F T W A R E P R O C E S S

We've claimed that requirements embody work practice design, but let s look to see if
that's really true. "Design," when it refers to the software process step, is a technical term refer-
ring to the design of how the software will be put together. It*s more restrictive than the nor-
mal English language usage, meaning the invention and organization of any structure, "Analy-
sis" is defined in different places as a model of the real world (Martin and Odell 1992), a
description of what the system should do without saying how it should do it (Rumbaugh et aL
1991), or a description of the solution assuming perfect technology (McMenamin and Palmer
1984). Leaving aside the question of how to reconcile these conflicting definitions (how can
the same activity model the real world and describe the new system?), none maps to the work
redesign step as we described it.

To illustrate, here's a specific example: the requirements specification for a CAD tool
states that the tool must allow drawings to be locked while they are being worked on, so that
two engineers don t try to update the same drawing at the same time.1 This is a requirement in
the classically correct form: it states what the system is to do, without saying how it should do
it. Using the alternate definition, it assumes no technological limitations in saying what a per-
fect system would do.

But it is not a model of the real world* You cannot walk out into the real world and find
locks. Instead, the requirement specifies one technical design element that implements a work
practice solution to the real-world problem. Locks make it possible to ensure that only one
person at a time can change a drawing; this is the underlying work practice to be implemented
by the system. It's possible to state the user need in a way that does not imply a design solu-
tion: "Multiple people must be able to use the system simultaneously without getting in each
other's way." But this would not be an adequate requirement—it would not tell the engineer-
ing team what to build.

Requirements go beyond a description of the real world to invent and choose one specific
solution to a need. Other designs might meet this need equally well: The system might allow
simultaneous update of the same diagram, but support easy comparison and merging of dia-
grams. Or, if two people started changing the same drawing» the system might show them
both what the other person was doing in real time. Both these alternatives meet the underlying
need. Because requirements embody a design choice, we do not view analysis as a process of
successive refinement (Loucopoulos and Karakostas 1995). Instead, we see it as an act of
invention (Potts 1995).

The three design options—locks, merging, and simultaneous update—differ in the work
practice they support. Other considerations being equal, which option to prefer depends on
which work practice is better for this population of users. If engineers work on a drawing for a
while, but conflicts between them are rare, it might be reasonable to keep two people from work-
ing on the same drawing, and locks might be the best choice. If people make small quick O

1 This example is taken from Rumbaugh et al. (1991). Because we are focusing on the underlying
thinking process, we find that a textbook example reveals the issues most clearly. It was construct-
ed, after all, to be a good example of a clean requirement.

224 Chapter 11 Work Redesign

changes but often work on the same drawings, merging might be better. If changes are rapid
and no one is the primary owner of any drawing, but collaboration in changes is necessary to
keep the drawing consistent, simultaneous update might be best. The specification of the first
design option as the system requirement implicitly defines the work practice to be preferred
over ail others. And it does so without making the design choice or the underlying issues
explicit,

So the choice of requirement embodies a work practice design choice. And this design
choice can be informed by the work models—the manual work patterns that preexist the auto-
mated system are usually a good indication of whats really needed in the work. Work models
of the organization in the example above might show that engineers commonly print out dia-
grams and hang over them together» discussing changes and marking up the diagram as they
go* This is a good argument for simultaneous update (though the system had better account
for that informal discussion that happens at the same time)* But if models show that diagrams
are handed from person to person, each person reviewing and modifying the predecessors
work, then locks (which implement a similar work practice) are probably the way to go. Unless
there's concrete evidence of breakdowns in the work practice that should be overcome—such
as errors introduced because people aren't coordinating their changes enough—you want to
design for the work you see. Ü

this model, the entire software engineering life cycle follows after the
initial "systems engineering" design process. Only once the needs of
the overall system have been identified and the overall system
designed, can the requirements on the software be analyzed and soft-
ware engineering start. Working out the details of the software and
hardware design will reveal issues and problems for the whole system,
which are worked out by keeping systems engineering involved
throughout the process. Software requirements analysis is a response
to the systems design, not an initial activity responding to the real
world directly.

Contrasting the typical software life cycle of Figure 11.1 with the
systems life cycle in Figure 11.2 gives the impression that software

engineering as a formalized discipline started by
splitting off from the engineering process for
embedded systems. It s as if the industry adopted
only the "software engineering" part of the process,
without recognizing that the initial design of the
overall system was still necessary. There is still a

The standard software life
cycle is missing a work
redesign step

Work redesign as a distinct design step 225

broader system to be designed, including the work practice of the user
into which the software fits. When that's done, the software analysis
step can reveal what the software has to do to make it possible.

In the organization, the transition between organizational roles
tends to support this traditional split. Business analysis decides what
the business needs and what the system should do. Software develop-
ment figures out what the analysts want (requirements analysis) and
how to build it. Marketing (in theory) decides what the customer
would buy, what features it has to have, and how to design a whole
corporate response around it. They pass requirements to engineering,
who then analyzes those requirements and builds the system. In fact,
as we discussed in Chapter 2, it's never so clean—marketing can't
determine the right response without the detailed technical knowledge
held by engineering. Business analysts can't specify the system in isola-
tion from the business processes and support structure. Designing the
corporate response is its own integrated activity.

Calling out work redesign as a distinct step gives a straightforward
way to fit the design of a corporate response into the software devel-
opment life cycle (Figure 11.3). Designing the cor-
porate response is an initial activity that includes
deciding how people will work and what software
has to do to support that work. Software require-
ments analysis produces a model of the design solu-
tion as it affects the software, not a model of the real
world. The design decisions currently embodied in requirements are
made during the redesign of work practice. This is indeed a design
step, which provides a place in the life cycle to make the design choice
between alternative models of work. As a design activity, it responds
to the understanding of the customer needs and drives the subsequent
development activities. (See Catledge and Potts [1996], Hefley et al.
[1994], and Kelley and Hartfield [1996] for other perspectives on this
distinct design step.)

In the rest of this part, we'll discuss how to design the corporate
response. We'll show how to use work models with the multiple per-
spectives of a cross-functional team to see issues in the work and cre-
ate a vision that responds to them. We'll show how that vision can
drive an integrated corporate response, including the definition of the
system component.

Giving time and place

to work redesign makes

coherent creativity possible

Typical marketing involvement

Gathering
user

knowledge

Work model
consolidation

w
w

Visioning

J

Redesigned
work model

Discovering user needs Work redesign

Typical engineering involvement

Software engineering

Software
requirements

analysis

<

Internal
software
design

Software
• Code
• Test
• Integrate

Continued strategic involvement

Hardwareingineering

i
Hardware

requirements
analysis

<

Hardware
design

>

Hardware
• Fabricate
• Test
• Integrate

Continued strategic involvement

Business
process
analysis

Process engineering

Business
process
redesign

>

Process
test and
iteration

<
Continued strategic involvement

Parallel development

H JL j ^

>

F I G U R E 1 1.3 Contextual Design in the software life cycle.
With a vision in place, developed by redesigning customers' work
practice, it's possible for each function of the organization to work
on their part of the corporate response in parallel. Continued coor-

dination ensures that the teams keep working to the vision, that
their parts work together, and that changes are reflected throughout
the system.

o

-vj

This page intentionally left blank

Using Data to
Drive Design

We've defined a new process step, work redesign, and we've locat-
ed it in the systems engineering process. It's the job of the work

redesign step to invent the new work practice that a corporation will
deliver by building systems, offering services, and redesigning proce-
dures. Invention of work practice is based on a foundation of cus-
tomer data, driven by knowledge of the different available technology
and how to apply it to the design problem.

There are all kinds of technology a team might take advantage
of—hardware, software, delivery mechanisms, service possibilities, and
process design, to name just a few. But there's one
critical kind of technology that a team must have yet
is not commonly available. The team's primary task
is to design work practice—which means that know-
ing how to manipulate work practice is a central skill
for the team. The "technology" of work practice—
how to see issues in the data, how to think about redesigning work to
address the issues, different process options for redesigning work and
their benefits and drawbacks—these are necessary skills for a design
team. Yet they are skills most teams don't have.

There are two ways to learn how to see work structure. One is
inquiry into the consolidated models. Inside each work model are hid-
den issues and insights that will inform the design
process, but it takes knowledge and inquiry into the
models to pull the issues out. The second way to see
work structure is to look at work that has the same
structure or pattern as the work you're studying, but
that is more familiar or transparent. By using this

The critical team skill:
how to see and design
work practice

See work structure in
consolidated models and
metaphors

230 Chapter 12 Using Data to Drive Design

Look at how roles map to
people and organizations

work like a metaphor, drawing parallels between it and the work you
care about, you see issues and structure you might not think about
otherwise.

What follows suggests some ways to look at consolidated models
and see the issues they suggest. Then we'll discuss metaphors and how
to use them. These ideas will get you started thinking about how the
work models might suggest design possibilities.

T H E C O N S O L I D A T E D FLOW MODEL

The consolidated flow model ties together much of the critical infor-
mation about the customer. It's your best starting point for under-
standing work practice and driving design. The flow model shows the
roles people play and how they map to individuals; looking at the
roles, and the flows that support them, reveals communication pat-
terns and problems in the work.

Every mapping of roles to individuals raises unique problems.
When too many roles are assigned to one person, that person is over-

whelmed and unable to focus on one thing. When
they are split up among many people, then those
people have to coordinate to get the job done. De-
partments often oscillate between these extremes:
overcentralization causes a bottleneck so they diver-

sify, then when they realize that diversification caused communication
problems, they recentralize. But any arrangement of roles creates its
attendant problems. It's our goal to build the solution to the problems
into the work process rather than search for the perfect role structure
that solves all problems.

With that introduction, let's look at some of the issues associated
with roles and mapping them to individuals. To facilitate discussion,
we'll give each issue a snappy tag and then discuss its implications.

R O L E S W I T C H I N G

Everyone plays more than one role. Each role is a coherent set of tasks
and responsibilities that hang together organically. Switching roles is
like switching hats; it means putting aside an entire way of thinking
and set of concerns, and taking up another. Sometimes the new role

The consolidated flow model 231

Experimenter
—Run experimental tests

on substances
—Interpret test results

-Document and report results of tests
—Help other scientists run tests

—Describe what's needed of new
equipment

Method developer
-Develop a new test procedure

through experimentation
—Document the new test procedure

in standard form
—Assist other scientists in using the

new procedure

F I G U R E 12.1 Two roles played by a scientist (the two roles are shaded alike,
indicating that the same person plays both). Switching between roles is part of the sci-
entists life, but do the tools support putting down one role and taking up another?

just continues the work, as when a developer who does her own test-
ing starts testing a module. But sometimes the new role is an interrup-
tion, in which case the whole context of the interrupted task has to be
stashed away to be recovered later, and a new context brought out to
worry about. Every transition between roles is an opportunity to for-
get something, to allow an issue to fall through the cracks.

Consider the scientist who also develops methods: formal proce-
dures for doing an experiment (Figure 12.1). He's in the middle of
defining a method when a test run completes. This
forces a switch from the Method Developer role to
the Experimenter role. He may choose to analyze
the results immediately or save them for later, but he
must at least clean up after the test. He has to save
everything about the method to one side in such a
way that he can resume the work later.

Role switching suggests issues a system could overcome. Do peo-
ple have to reenter the same information in each of their different
roles? If the roles are played by more than one person, redundant data
entry is wasteful, but if the same person reenters the same data, it's
exasperating. A scientist who creates a method shouldn't have to re-
enter information about the method in order to use it. Can systems
share data to eliminate reentry?

Do the systems in place support the movement from role to role?
Are they completely disjoint systems, so switching roles means starting
up an entirely new interface? Are some roles not supported at all, so
users are cast back on their own resources for part of the job? The

Role switching creates

opportunity for something

to fall through the cracks

232 Chapter 12 Using Data to Drive Design

The systems job is to hold
work context for people
switching roles

developer who finds herself having to switch back to the command line
and homegrown scripts to run tests won't think she has a complete

development environment. Look for ways to inte-
grate systems so they provide seamless support for
the work.

And do the systems support putting a role aside
and coming back to it later by saving the context of
the task? Do the systems allow the task to be inter-

rupted? What context does the user need saved? Saving context doesn't
have to be complicated—Microsoft Word saves your last position in a
document so you can pick up right where you left off.

H I N T S

• Eliminate redundant data entry

• Support movement from role to role

• Support consistent interfaces for the different roles

• Save state to support interruptions

Look for people who drop
the ball because they wear
too many hats

ROLE STRAIN

When people play too many roles, they get overwhelmed. They are
trying to wear too many hats, each of which has its own imperatives,
its own concerns, and its own demands. There are just too many roles
to switch between. Any small business person is plagued with this
problem, as are secretaries. Dual-income families have it in spades.
The constant switching increases the demand on the person and
increases the chances that they'll lose track of things. Furthermore, the
roles themselves may call for different skills or meeting different goals.

The person who has the primary responsibility for running a
household provides the classic example of role strain
(Figure 12.2). Each different role has its own needs
and tasks, its own demands on time and concentra-
tion. But when there are so many, the people are
always juggling them, trying to give enough time to
each that nothing important falls through the cracks.

When you see people under role strain, look for ways to alleviate
it. Are there roles that could be totally automated, or substantially
supported? Online shopping eliminates the Shopper role, reducing

Head chef
—Keep track of what's in the kitchen

—Provide oversight and instruct other cooks as necessary
—Make sure cooks are working together to get all the meals for the family

-Add any ingredients, groceries, or special items to shopping list, or inform shopper
—Communicate exact needs to shopper
—Tell shopper how to shop, what to get

—Decide on desired meals for special event with event planner
Find out what's needed to restock inventory

—Track items to stock for future use
—Find out what family needs

—Make shopping list

s
3
o

Cook
—Make meals

-Negotiate meals and who will make them with other cooks
—Change meal plans and shopping list based on what's available

—Make sure ingredients for planned meal are available
—Plan meals, considering preferences of family members

—Coordinate with head chef on use of kitchen
—Coordinate with head chef on how to make meal

—Add items to list as they are used

Funds manager
—Ensure shopper can pay for items
—Keep track of deals and discount

mechanisms

Event planner
—Make special plans for an upcoming event

—Work out food needs with head chef

Shopper
—Go to store and buy items for family

—Decide where to go to get the best items
—Find out exact family needs and preferences

—Find out from head chef what to buy and when to go
—Find items and put them in the shopping basket

—Make sure kids on the shopping expedition are well-behaved
—Coordinate the shopping expedition with other shoppers

—Make on-the-spot decisions about substitutions
—Bring receipts and accounting to funds manager
—Bring accounting of expense to funds manager

—Use discount mechanisms
—Plan shopping logistics

Worry keeper
—Track needs, inventory, status of a domain

—Make sure main Copper knows what's needed
in this area, ör get it themselves

Shopping list organizer
—Make a good list from which Copper can shop

—Make sure the list specifies the detail shopper needs
—Organize list by the store organization

—Coordinate with head chef to ensure that
the right things are on the list

F I G U R E 1 2 . 2 Some of the roles played by a head of a house-
hold. When one person plays so many different roles, just tracking

the work of the different roles becomes a problem.

234 Chapter 12 Using Data to Drive Design

The systems job is to

off-load people by

automating work

the number of roles people have to juggle. Failing that, can you keep
much of the information needed by a role in the system, so people

don't have to rely on their own organization? If you
capture the issues a Worry Keeper tracks, and
remind him of things he might forget, it will be easi-
er to play that role. Or it may be possible to move a
responsibility or a whole role to another person. In
this way, the advent of word processing moved most

of the document production role from secretaries to professionals, giv-
ing the professionals more control and reducing the cycles of passing
the document back for correction.

H I N T S

• Automate or eliminate roles
• Support and organize roles
• Move responsibilities or roles to other people

People with different jobs,
skills, and tolerances play
the same role

The systems job is to work

for all the people who

share a role

ROLE SHARING

When multiple people with different job responsibilities all play a role,
they are role sharing. Doctors, nurses, and technicians may all take

samples from a patient (Figure 12.3), but they'll do
it differently. Doctors draw samples in the context of
a patient consultation; lab technicians don't have any
other contact with the patient. The different people
have very different skills and expectations: doctors
assume their time is at a premium and have no

patience for dealing with computers, but it's the lab technicians job to
make sure all data is entered and is correct. And the context of use is
different: doctors will do the work in a consulting room, while lab
technicians often have stations set up especially for taking samples.

So how should the system respond? Recognize the different needs
and characteristics of the different users. Even though it's one role and

one task, don't assume one interface will fit all users.
Design for the most demanding user, and create a
system that is cleaner for everyone. Doctors may not
be willing to put up with a complicated interface,
but an interface that works for them may be an

The consolidated flow model

^^ Sample drawer ^ N
—Draw samples

—Communicate additional patient requests to
s. Lab requisition translator

F I G U R E 1 2 . 3 A role annotated to show how individuals play the role. The
shade shows that nurses play the role, the pattern shows that technicians do, and the
dark outline shows that doctors play the role.

improvement for other types of users as well. Doctors may need a
portable system with pen input that they can take with them on their
rounds. Technicians may be able to use a desktop interface and may
be willing to do keyboard entry. But they'll need the system to inte-
grate with the rest of their work, including sending the sample to the
lab for test. Also, look to see whether all users need the same informa-
tion. The doctors may need less detail than the tech, even though they
may share data in the underlying system.

H I N T S

• Tailor the interface style to the user
• Tailor the data presented to the user
• Share data internally across the types of user
• Fit with the rest of the roles each type of user plays

ROLE ISOLATION

Any of the above problems may be resolved by separating roles cleanly
among individuals. But that just raises a new set of issues. Each role
has a coherent job to focus on, but it needs to hand off work to other
roles and communicate the context of the work—the roles depend on
each other to get the job done. When people don't do a job, they don't
know what's involved in doing it or why it's hard, and they often end
up blaming the people responsible for it for not doing it well. It's like
a manufacturing line—everyone understands their own part of the job
and blames the other parts for not producing the materials or using
the results properly.

236 Chapter 12 Using Data to Drive Design

Head chef
—Keep track of what's in the kitchen

—Add any ingredients, groceries, or special items
to shopping list, or inform shopper

—Communicate exact needs to shopper
—Tell shopper how to shop, what to get

—Find out what's needed to restock inventory
—Track items to stock for future use

Family preferences

\
When to shop

\
Clarify needs and

possible substitutions

Shopper
—Go to store and buy items for family

—Decide where to go to get the best items
—Find out exact family needs and preferences

{—Find out from head chef what to buy and when to go]
Find items and put them in the shopping basket

Shopper doesn't\. —Make on-the-spot decisions about
understand how ^ ^ substitutions

items are used and gets the
wrong thing

F I G U R E 1 2 . 4 Shopping as a role isolated from the Head Chef. The Head Chef
or Cook knows what the meal is and what ingredients will work. The Shopper only
knows what they've been asked to buy So if the list doesn't specify the exact brand
and size, or if the Shopper can't get the exact item and has to substitute, they don't
get the right thing.

Sending someone else to do your shopping invariably creates role
isolation (Figure 12.4). If the store didn't have something on your list,

your shopper has to choose whether to substitute

Division of labor doesn't

eliminate the need to

coordinate

The systems job is to carry

context between roles

something else or come back with nothing. How can
they decide which to do? They'll only know which to
do if they know what you want the items for and
how they fit together. Otherwise, they'll come back
with half a meal. So each role has to have enough of

the whole work context so they can really do their tasks on their own.
When roles get too isolated, and it becomes clear that communica-

tion is a major problem, organizations sometimes create liaison roles
whose sole job is to maintain communication. A typ-
ical situation for IT departments is to have the busi-
ness customer communicate requirements through a
customer representative, the person on the customer
side chartered to say what they need (Figure 12.5).

The consolidated flow model 237

Business customer
—Do the work of the business

-Communicate needs and wants

Customer representative
—Represent the business to

the IT organization

IT

Business
Business analyst

-Understand the work of the businesŝ
-Determine system requirements

Developer
Develop code that conforms to

requirements and meets the needs
of the business customer

F I G U R E 12 .5 Role isolation at work. Two new roles have been created to man-
age the communication between the business and the developer.

These requirements are communicated to an analyst, the person on
the IT side chartered to find out what customers need, so the develop-
ers can build it. These intermediary roles exist only as an attempt to
overcome role isolation.

Deal with role isolation by addressing the communication prob-
lem. Can you capture and communicate state by introducing a new
artifact, or by automating and improving an existing one? Can you
show each of the different roles exactly what they need to do their
part of the job—so the Head Chef sees "cream cheese," but the Shop-
per sees "1 Philadelphia Cream Cheese, 8 oz. block"? Can you coordi-
nate the handoff process so that the communication from one role to
another doesn't look like passing an artifact only, but allows for a con-
versation around it? Can you show the context of a communication,
so the Shopper finds out which ingredients all go together? Where
intermediary roles have been created, can you facilitate their commu-
nication, or should their responsibilities be folded back into the pri-
mary roles on either side?

238 Chapter 12 Using Data to Drive Design

H I N T S

• Communicate the whole context between roles
• Support communication between roles
• Present only the information each role needs
• Automate or eliminate unnecessary liaison roles

Redesign the work by
changing role structure
directly

P R O C E S S F I X E S

When you're an IT department working with internal users, there's a
wider range of fixes available to you. In partnership with the business,

you can redefine job responsibilities, reassign roles
to different people, put new procedures in place. If
you decide to eliminate a role, you can do so by
automating everything it does, but you can also sim-
ply reassign its responsibilities to other roles or
introduce new procedures to make it unnecessary.

One company completely rethought the purpose of its purchasing
department. The department's primary role was the Shopper, placing
orders for people and paying bills—and making it more difficult and
slower to buy things. In fact, much of their work was clerical and
added no value. They decided they wanted to give up the Shopper role
entirely, returning it to each individual department. They would
restrict themselves to the Finder role, helping people locate and set up
relationships with vendors for the things they needed. Integrate process
fixes such as these into your system response—your system won't just
support the work as it is, it will support the system as you and your
business partner redesign it. Include the people responsible for looking
at your business process on the design team so they are included in the
discussions and you have the benefit of their expertise.

H I N T S

• Design the organization as part of designing the work
• Consider process and procedure changes
• Consider defining new roles and job responsibilities
• Include business process designers on the team

The consolidated flow model 239

TARGET T H E CUSTOMER

Once you've looked at the flow in detail in all these different ways,
step back and scan across the whole model. Ask: Where is the center
of the work? All aspects of work are there for a purpose. What's core
to that purpose? An analytical lab s sole purpose is to get its clients the
answers to specific questions about the materials being tested. Every-
thing else an analytical lab does is in support of that. So the Experi-
menter role is central—but if there was a way to run experiments
automatically even that role could be dispensed with. Every role is a
means to an end. Look for the fundamental intent and seek ways to
address it more directly.

If you're a commercial product developer, this central role is the
key leverage point for your market message. Even if you're actually
selling a product to support another role, you'll

Find the key roles
to leverage the market

want to show the benefit of the product for the
Experimenter. If the lab can't get the procedures
done fast enough because it takes too long to wash
the glassware, emphasize how your glassware washer
will improve the Experimenter's life. Even if they don't make the buy
decision, they will make recommendations, and their problems be-
come the lab's problems.

Look across the model to see what roles you address in your cur-
rent product set. What other roles do they touch? What other roles
are played by the same people? Those roles are natural to address in
future products. Use the flow model to plan how you'll address the
whole market.

P I T F A L L S

Your last inquiry is a sanity check. What will you mess up if you do
the things you plan? By automating a role, have you broken a com-
munication path that the role maintained? By shift-
ing a role to another person, did you create role
strain for them? Is there a natural separation of roles
that you should maintain, such as the separation
between writer and editor? By separating roles, did
you create role isolation that you will have to overcome with addition-
al tools? Remember that every division of roles creates its own set of
problems. Make sure you cover the mapping of roles to people that

Caution: dont create new
problems with your fixes

240 Chapter 12 Using Data to Drive Design

occur in the market, and make sure your redesign addresses the new
problems it will create.

THE CONSOLIDATED CULTURAL
M O D E L

The cultural model reveals values, standards, constraints, the emotion-
al and power relationships between people and groups, and how they
all intermix, conflicting and supporting each other (Figure 12.6).
Because it concentrates on feelings, the cultural model contributes
very little structural information to the design. What it does is give
lots of guidance on what matters to address and what constraints to
respect. It reveals the hot points, the interpersonal and process prob-
lems that people really care about fixing.

The information provided by the cultural model suggests a couple
of different design options. Some influences are constraints you cannot

change. These will affect how any product is accept-

Choose the culture to

build into your system

ed; a good design should conform to the constraint.
Some influences reveal problems in the cultural cli-
mate that a system might overcome or ameliorate.
Or, if the influence is a good thing, the design can

actively encourage and support it. Finally, when an important value
seems to be missing from the workplace, the design can seek to intro-
duce a new value as part of the new work practice.

I N T E R P E R S O N A L GIVE-AND-TAKE

If the flow shows the communication between people, the cultural
model shows the emotional aspect of the relationship. The different
ways that people attempt to impose their will on others and get resis-
tance are captured on this model. Relationships in which the power is
unequal reveal this power imbalance in the language and type of in-
fluences (Figure 12.7). Look for irritation or subversion in the influ-
ences; these will indicate where people are rubbing each other the
wrong way. 'Til find a way around the rules" indicates people aren't
happy with the way the rules have been set. Look for people fighting
over turf: "I manage databases. Dont touch them." "I only work on
hardware problems."

The consolidated cultural model 241

Redesign to reduce
interpersonal friction

Positive influences show where people join forces to get things
done, or where a group value shows up in the way
the work is done. Look for the positive values:
"Its my job to fix your problem no matter who's
at fault." "We cover for each other." Look for
ways to support these positive values.

Look at what's creating friction to see how to alleviate it. Is it
caused by role isolation, such as the isolation between system manage-
ment and users? Then increasing communication between the groups
may be the answer. Or maybe it would be better to design systems
that meet everyone's requirements. If you can ship a system that does
what users want and is still easy to manage, part of the friction will go
away. Look also for pervasive influences coming from the company or
professional culture. These influences will be the hardest to work
around—find a way to live with or support them.

H I N T S

• Alleviate role isolation
• Increase communication

• Address the immediate complaint

P E R V A S I V E V A L U E S

Formal policy set by the organization and the organizations implicit
values constrain what people do, how they act, and even how they
think. The values that an organization makes real in its culture deter-
mine what people care about and what motivates them. Some values
are driven by the organization. They constrain people in the organiza-
tion, defining what they care about and think they are up to as a
group. Other values are driven by groups and individuals, and either
reinforce the organizations values or push back against them.

Pervasive values may show up as a single influence that runs into
multiple bubbles, but they may also appear as multiple influences that
together point to larger attitudes and mind-sets.
When the organization pushes the value "keep careful
equipment records" on the system managers, this is
part of a constellation of values having to do with be-
ing a careful, managed organization that is in control

Choose whether to support
or alter customer values

Special HW place*

Al lO;VUM!X l t ' V M Ï t K U l HVV

* Problems found by watchers
- Queu-J d o w n

■ Di-,k l o q q i r v j t

O'.jf Ot P^TTIw

- P r o u - s ^ u ^ r i t
■■-Mdll WStRTi f |

■ - S r < u i i t v pas'.
S-,'<',jrilv ffi i l,-'

r ro fs

V
<j

n v ! i
vo r t f ir1 ' i i i !

1 io.-î.n

*User problems and requests

^CUJ fS l TO m s l j i l 5\V
-Requo1.! for np-.v account

--Requit -or more rtifk sp^;t-

Request for nev,- pfifft i ^eue

Requi t toorci.-ü'ivfn: nJtil>

count:,!

K j

S

&

b

F I G U R E 1 2 . 6 This consolidated flow represents part of the
work of system management. This model uses shading and pattern
to show how the roles map to job functions—light gray for the roles
that system administrators typically take on, dark gray for users, dots
for operators, and stripes for outside vendors. (The roles with white
backgrounds don't map to specific job functions.) An inquiry into
this model pulls out of all this detail the key issues a team might
focus on in a design supporting system management.

The relationship between the Caretaker Coordinator and the
Caretaker roles reveals role isolation—especially in the number and
type of flows between the roles. Caretakers are the administrator's
hands for routine jobs, but communication with them needs to be
clear and detailed or they won't perform the administrators intent.
Caretakers also contribute to role strain on the administrator—they
off-load routine tasks, but the administrator has to manage them.
There's so much management that it effectively creates a new role for
the administrator.

The First-Line Helper is an intermediary between User and
Responsible Person. Such a role is often put in place to manage com-

munication between isolated roles. The First-Line Helper can handle
simple problems, provide quick help, and escalate the real problems
that need fixing. But the Responsible Person loses some of the con-
text of the problem, as indicated by the three-way discussion that
sometimes follows. And the escalation process takes time. Users will
send urgent problems to Responsible Persons directly if they can.

Looking over the whole model, it's no surprise that the system
administrator's roles are in the center of the work—but the model
shows exactly how they are in the center. Administrators work with
users to keep the systems working for them and to communicate
policy. They work with operators to do the day-to-day chores. They
have automated alarm systems (Watchers) informing them when
things go wrong. They work with planners on expanding the system
and with vendors on problems and on fixing the systems. The ad-
ministrators are in the center of a web of relationships that work
together to keep the system running. That's what system manage-
ment work is about and what a product has to maintain if it s to be
successful.

244 Chapter 12 Using Data to Drive Design

• Change your usage to fit our management needs
x^* Set up your system my way for my convenience

^ System
manager /

group /

F I G U R E 1 2 .7 Showing the nature of a relationship: the use and subversion of
power between system managers and users.

of how it does things and documents actions thoroughly (Figure 12.8).
But individuals or groups may push back. "It's easier to throw equip-
ment away than keep careful records" indicates both a willingness to
counter the corporate direction and a willingness to spend money
These attitudes will show up in other values and in concrete behavior.

Dealing with pervasive values usually means deciding whether to
work with them or against them. To work with a value, introduce sys-
tems that make it easier to achieve—perhaps an automated tracking
system will make it easy to keep records without requiring major over-
head. Look at the flow model to see what roles the value touches and
where systems might make a difference. Work against a value when
you decide it's counterproductive. So you might decide that your orga-
nization is too willing to spend money. Then introduce systems that
expose how much people are spending and when; make the budget vis-
ible and show how much is left against each budget item. Be aware
when you're bucking the culture that this may make your system less
attractive—you'll need a good story for why it's better to use the sys-
tem anyway or else it will have to be so subtle that no one minds.

Values and policies you decide to accept join another category: the
absolute constraints you can't or won't do anything about. If the FDA
(Food and Drug Administration) regulates your industry and failing
an FDA inspection will cause your stock price to drop, there's no way
to get rid of the value "We document our procedures every way we can

I'll find a way
around the rules
I'll set up my system
my own way

The consolidated cultural model

Reduce staff and budget
Keep careful equipment records

Keeping records is too hard-
well just throw out the
equipment

F I G U R E 1 2 . 8 Identifying policy and values. They will show up on the cultural
model, but watch what happens to them. Do they get picked up and carried through
into all parts of the organization, or are they subverted?

for the FDA/' If the whole corporation is organized around "Shipping
hardware is how we make money," trying to focus on software will
always be hard. Make sure your system promotes, or at least won't
interfere with, these absolute constraints.

HINTS

Make positive values and absolute constraints easier to achieve

Make negative values harder to achieve
Oppose negative values by introducing counterbalancing positive values

P U B L I C R E L A T I O N S

The cultural model, more than any other, tells a team what their cus-
tomers care about (Figure 12.9). It reveals the key issues that should
be the focus of the teams efforts. So the cultural model can be a focus

to
ON

Reduce staff and budget, or if you need it, buy it
^Simplify the configuration you support

•Keep careful equipment records

•Keeping records is too hard—
we'll just throw out the equipment

S j

S

b

b

F I G U R E 1 2 . 9 This consolidated cultural model for system
management shows the relationships inside the system management
group, the relationship to clients, and the relationship to external
vendors. Within the group, i ts apparent that communication and
organization is a problem. Problems can be lost in handing them off
between the different parts of the group, and coordinating with the
operators is difficult.

Wi th respect to the larger organization, the system manage-
ment group is subject to some heavy constraints. They have to keep
the users happy ("Lose my data and lose your job"). There's some
evidence of role isolation causing friction between system managers
and users in the influences going back and forth. The corporation
also imposes constraints—both in demanding such things as equip-
ment tracking and in limiting such things as funds for training. We
see how the training problem filters down into additional problems
running the group ("Figure out problems yourself"; "Train me and
I'm gone").

Finally the model shows the relationship between the system
management group and external vendors. (This can be particularly

interesting when the team building the model is one of those exter-
nal vendors—they are mapping their relationship to their customers
on their model.) T h e model shows how external vendors aren't
responding to system managers' needs. The refusal to share technical
tricks and to provide status information is infuriating to people who
prize knowledge as much as system managers do. And the assump-
tion that everyone is eager to upgrade their systems at any m o m e n t
is just unrealistic.

Because this model reveals the vendors customer relationship,
as well as the rest of the system manager's relationships, it s particu-
larly conducive to developing a slogan. Perhaps the team m i g h t
choose "We're on your side"—unlike all those other vendors we'll
take your side in helping you do the work of managing systems.
This might lead to specific product components that make it easier
to handle tracking and handoff, but it might also lead to services
designed to share knowledge with system managers.

248 Chapter 12 Using Data to Drive Design

Plan your impact; write
your organization into the
cultural model

Change processes of internal
organizations directly

for discussing how your team wants to appear to the customer—what
message you want to give. You can write yourselves onto the cultural
model (if you're not there already) and draw an influence to the cus-
tomer population. What do you want that influence to say? Do you
want to be the "We are your reliable protection against FDA audits"
people? Or do you want to be the "We let you get your work done
despite all those bothersome requirements" people? What's the mes-
sage that will sell to the population?

A convenient way to capture this direction is a team slogan—a sin-
gle, simple statement of the team s mission they can use to keep them-

selves focused. In one case, the marketing manager
looked at a cultural model and said: "Look there—
what all these influences are saying is that our cus-
tomers need flexibility in expanding their systems.
They aren't going to plan ahead and they can't. What
they really need is fast response. If we could turn

around their order in 48 hours, they'd buy from us without thinking."
"Turn around an order in 48 hours" became a slogan for the team—it
emphasized a simple, achievable system characteristic, important to
their customers, that they could focus on. The slogan becomes a rally-
ing point, a way of choosing between options to advance the team's
primary goal. Use the cultural model to define a slogan that fits your
customer's desires and who your team wants to be.

P R O C E S S F I X E S

It's easier to affect corporate culture when you can change manage-
ment structure and process. Management can deal with interpersonal
friction by introducing better communication channels of all sorts,
from new systems to brown-bag lunches. They can introduce new val-
ues not only by ensuring that the systems enforce values, but also by
changing management tone and procedures. Defining new cultural
influences can be a task for the whole organization, of which the auto-
mated systems are just one part.

When you're building a system for an internal client, the customer
can be on the design team, and they'll see possibili-
ties in the data beyond system delivery. In one team,
a manager in the client organization sat in front of
the cultural model for a good five minutes, then

The consolidated physical model 249

jumped up and said: "But this is wrong! We want everyone in our
organization to be conscious that the day-to-day decisions they make
directly affect how long it takes to ship product. That's not here at all!"

It wasn't there, of course, because that value wasn't real in the
organization—no one was acting out of it. The manager drew a new
influence in to represent the new value he wanted to instill. It's part of
a manager's job to monitor and manage the values of an organization,
so it was natural for him to see the omission and to think he could do
something about it.

P I T F A L L S

The primary danger with the cultural model is that you'll try to lead
the customers where they don't want to go. Are you really supporting
the issues they care about? If you're introducing a
new value, do you have evidence that anyone cares
about that value? The success of the first notes prod-
ucts were limited because they were pushing open,
flat access to information on organizations that
were, at the time, hierarchical and closed. Only
when the notes products started to include controls over the access to
information did they become successful. Make sure the changes you
introduce will cause someone in the customer population to sit up
and take notice—otherwise, you aren't giving customers a reason to
adopt your system.

THE CONSOLIDATED PHYSICAL

M O D E L

The physical model's primary message is about how physical space
constrains what you can do. The world of walls and buildings is hard
to change. Within the walls, however, there is room for adapting the
physical environment to the needs of the work. People lay things out
to meet their needs, define spaces to support the work they do, and
otherwise make the physical environment work for them. The physi-
cal model shows both the constraints imposed by the environment
and the structure people create within those constraints to get their
work done (Figure 12.10).

Dont try to take
customers where they dont
want to go

to
o

Central site

Local building

* Can't keep configuration
databases in sync tf
net fails

Insights
•Need to watch day and night
•Need to watch what I am not near
•Multiple sources of problems'

watcher, beeper, phone
•Need to take info wherever
system manager goes

•Job requires moving around
physically

•Must be able to hand off
responsibility

•Keeps everything online

3 .

°a"

F I G U R E 1 2 . 1 0 A consolidated physical model showing a sys-
tem manager's environment. This model shows the nature of the
large-scale physical environment and populates it with important
work elements.

The first aspect of the reality check is just to look at the spaces:
system management isn't just about the machine room. This is a
global network, managed by people on several continents. They all
have to coordinate, and they have to hand off problems and control
of the network. Even within one site, the spaces aren't close. System
managers have to walk between the users' offices, their own office,
and the machine room.

Looking at the physical model like an archeologist, the aspect
that jumps out immediately is all the different ways system managers
create to stay hooked into the systems. Online watchers that send an

alert when conditions change, telephones and buzzers by devices
that may fail, telephones in the computer room to call other sites
monitoring the network—clearly it's critical that system managers
feel like they know what state all parts of the network are in at all
times.

The message of this model might be summed up in two design
implications: First, communicating and coordinating with all the
other system managers that keep things going is critical. If a product
can help system managers organize and manage their response to
system problems and user trouble reports, it will be well received.
Second, helping system managers keep tabs on their system is criti-
cal—and that means facilitating the communication of problems
from users as well as from automated watchers.

252 Chapter 12 Using Data to Drive Design

Know what you can and
cannot change

THE REALITY CHECK

The first message of the model is to make it inescapable what the cus-
tomers5 physical world is like. If the work is spread out over several
buildings, then expect communication to be a problem. Look for
existing communication mechanisms: Are people networked? Is every-
one networked? What other communication mechanisms exist?
Maybe people communicate primarily by yelling to each other. At one
site the user talked to the wall and the wall answered back—the parti-
tions were so thin that workers could collaborate even though they
couldn't see each other. Is the space noisy or quiet? How many people
will be disrupted if the system starts beeping?

The physical model may reveal intents that augment those on
other models and may reveal issues that are reflected in other models.

The physical model may reveal that your customers
walk around a lot; check the cultural model to see if
this is a positive value you should encourage ("We
know everyone and are always on the spot to help")
or an annoyance you should alleviate ("Every phone

call means another interruption and another hike"). The physical
model may reveal that supplies from different vendors are kept entire-
ly separately; this will explain why the sequence model for working
with vendors shows that people work with only one vendor at a time.
In this way, the physical model contributes to your understanding of
what's important to the work, as well as helping you get real about the
constraints your system must live under.

Design your system to deal with the constraints the physical envi-
ronment imposes. Allow for the way people move around in doing the
work—we've seen people call from a field site back to their main
office in another town, asking their coworkers to log them out so they
can log in remotely and get their work done. Let mechanisms that
work be. If people communicate effectively by yelling to each other,
they probably don't need email very much. And don't forget the other
side: take advantage of the hardware that is in place. If most of your
users already have two monitors, why not use them?

The consolidated physical model 253

H I N T S

Fit with the way people
organize their work

Don't depend on what's not there
Account for movement and multiple locations
Overcome communication problems
Take advantage of what is there

W O R K S T R U C T U R E M A D E R E A L

Where people can change the physical world to match their work, they
build into the physical structures concrete representations of the work
structure. Designers can learn the structure of work
by analyzing the physical structures people create,
just as archeologists learn about cultures by analyzing
garbage dumps. When the consolidated model shows
a "current work" pile, this is a concrete representation
of how people organize their days. A room dedicated to disposing of
hazardous materials indicates that how disposal happens is an important
concern. Each place—whether a pile, a corner, or a whole room—is a
clustering that supports one particular work intent. That intent is real
to the users and could be real in the system you deliver.

Then the relationship of artifacts and clusters to the user shows
what matters in the detailed doing of the work. What's in front of the
user, within arms reach? These are the artifacts that the user chose to
have "in their face"—they are the critical things to have handy What's
behind the user, pushed out of the way? These need to be accessible,
but they don t need to be immediately to hand. If the user is technical
and much of their work is online, look at the screen and how it's laid
out—it will capture much of the organization of work.

Look at the structure built into the physical world for clues into
how to build the system. When the structure exists because users
made it that way (the physical environment didn't force it to be that
way), it's a structure that matters to users in organizing their work.
Build that structure into the system and you'll support the work bet-
ter. When people create a "current work" pile, it says that the primary
organization is "what I am working on now"—not by project. If you
design a system that organizes work only by project folder, it will fight

254 Chapter 12 Using Data to Drive Design

the way people think about their work. Look at placement to deter-
mine the detailed structure of the system. An artifact that is pushed
out of the user's way probably shouldn't be the most prominent thing
in the system, but things kept at hand can be easily accessible in the
system.

H I N T S

Separate spaces reflect

work distinctions: dont

violate them

• Build conceptual structures into the system

• Match the intent of the place, not the detailed appearance
• Make the things in the user's face easily accessible
• Put things placed behind the user out of the user's way

M O V E M E N T A N D A C C E S S
The pattern of movement of people and artifacts through the physical
environment provides another layer of insight. The flow of an artifact
through a persons office shows the important stages of working on it
and indicates what stages an automated system should support. The
movement of people through space shows important relationships in
the physical environment—so frequent movement between the differ-
ent system consoles in a lab indicates that the work is on all the sys-
tems together, not on each system individually.

Finally, the relationship between spaces reveals distinctions and
intents. When home offices are repeatedly located up or down a flight

of stairs from the rest of the house, it indicates that
separating home office activities from household ac-
tivities matters. When conference rooms are located
around the entrance to the site, and none are found
near offices, it indicates that meetings are thought to
be how you work with clients, not how you work

with each other. The arrangement of space indicates its usage, and its
usage suggests attitudes, values, or intents that matter for your design.
If it s a problem that workplaces are far away, look for ways to bring
that work closer through automation.

Movement in the physical world indicates how to structure a sys-
tem. The steps people take to work on an artifact reveal stages of work.
Look at the sequence model to see the work structure, and build a

The consolidated physical model 255

system that matches that structure or redesigns it. If two kinds of work
are kept separate in the real world, maintain that separation in the vir-
tual world—people won't want to mix them. Use the arrangement of
the real world to find out what matters. But make sure you match the
intent, not only the actual arrangement. Putting the office up or down
a flight of stairs indicates this is separate work that wants to be physi-
cally separate, whereas the separation between phone and Rolodex is
only a reflection of physical limitations.

H I N T S

• Match or improve the flow of artifacts

• Maintain conceptual separation between parts of the work
• Support the intents implicit in the arrangement of space

PARTIAL AUTOMATION

It's hardly ever possible to put everything online. People increasingly
use email, but paper mail still exists. So even if email is easier to file
and track, it hasn't gotten rid of paper filing—what it's done is to
introduce a new layer in addition to paper filing.

In the system you build, consider whether you've automated
everything about a job or whether customers still need paper. When
you build an automated ordering system, will people still print and
file a paper version so they can track what they've
ordered? When you automate scientific methods,
will scientists still have to print them to meet FDA
requirements? When you make lab orders electronic,
do requesters still have to print the order and attach
it to the sample? Make sure you've either covered the whole job or
that you dovetail with the paper documentation that is still necessary.

Work with paper—it's not

going away

H I N T S

Address all intents of the paper system
Provide complete coverage in the online system
Help keep online and paper in sync if paper is still needed

256 Chapter 12 Using Data to Drive Design

IT: consider moving walls
and restructuring space

P R O C E S S F I X E S

If you own the physical environment, you have the option of changing
it. You can move people and equipment around to make places that

support a single intent in the work. You can hook all
the people who need to communicate into the same
network. You can reorganize offices to better support
movement through them. You can give everyone
PDAs and install wireless networks. These changes in

the physical environment can be part of the overall response, support-
ing and supported by the systems you put in place. Planning the roll-
out so that changes to the physical environment are synchronized with
process changes is part of designing the corporate response.

Dont ignore the reality of

the environment

P I T F A L L S

The easiest way to mess up the physical environment is to not take it
seriously. If people don't have printers by their desks, don't build a

system that requires frequent trips to the printer. If
your users walk around all the time and like it, don't
try to tie them to a desk by giving them a product
that only runs on a desktop. Check the cultural
model to see if they like walking around. Check the

flow to see what communication is enabled. The physical model is
your guide to what's real—let it drive what you can do in your system.
But don't get too literal either. Try to achieve the users' intent, rather
than matching the current environment's limitations.

CONSOLIDATED SEQUENCE

MODELS

Sequence models make the detailed structure of a work task explicit.
They show how the task is broken into activities, the intents that peo-
ple are trying to accomplish in doing the task, the different strategies
people use, and the individual steps that make up the task. Sequences
are your best guide to structuring a system to match and extend the
way people approach a task (Figure 12.11).

Consolidated sequence models 257

F I X I N G A P R O B L E M

Go to the place where problem can be
solved

Get more information on problem

Look at system to see problem in
context

Think about who is expert in this
domain

Search for problem cause by hand

Create and run specialized procedure
to search for cause of problem

Identify cause of problem

If a disk problem:

See who will be affected by work on
disk

Warn users of work to be done

Wait for users to get off disk

Dismount disk

Find scratch disk or new disk

Mount new disk for use in fix

o

F I G U R E 1 2 . 1 1 A consolidated sequence model showing how system managers solve problems. This is
a partial model, but shows some of the major activities and intents in the problem-solving task. The
sequence suggests both what issues a design might address as well as how it should be structured to support
the user well.

Looking down the set of activities reveals an initial set of concerns a design might address. The very
first activity is "Set up to tackle problem." How could a design support getting set up? Currently, system
managers have to go to the place where the problem is. Looking at the intents reveals that "setting up"
means both going to the right place and getting information and context about the problem. A system that
could both provide remote manipulation and reveal what's going on at the failing system might address the
whole activity,

In a later activity, "Escalate problem," the system manager coordinates with backup expert help. There
are two strategies: one to work on the problem together and the other to hand over responsibility for the
problem. Each strategy needs to be allowed for in a system. The system could focus on supporting collabo-
ration between the system manager and the backup help with groupware-style tools so the two can see what
each other is doing. Or, the system could support handing off problems, simplifying the process by passing
context and history to the new owner automatically. Or the system could do both. The flow and cultural
models will offer additional insight as to which solution would be most valued by the customer population.

Set up to tackle
problem

Set up place and context to tackle
problem

Orient self to problem situation

Anticipate need for help

Search for cause Identify cause of problem

Fix problem

Eliminate repetitive tasks

Minimize disruption of users' work

Move substitute H W into place so
users can keep working

258 Chapter 12 Using Data to Drive Design

F I X I N G A P R O B L E M

Fix problem continued

Escalate problem

Document actions

• Move substitute H W into place so
users can keep working continued

• Apply and check fix

• Get answers to questions

• Ensure hypothesis about problem is
correct and problem is fixed

• Get help, either keeping
responsibility or passing it on

• Apply advice from expert to solve
problem

• Make it possible for expert to solve
problem

• Save time and boredom, and
maintain responsibility for the
solution

• Save time by passing responsibility
and doing something else

• Track work done and changes made

Create directories if necessary

Copy files to their right places

Mount new disk publicly if it is
permanent

If other problem: process crashes, fix
inappropriate message on VTX, create
print queue, install SW

Attempt fix

Use documentation to help do task

Determine if fix worked; if worked, go
to "Document solution"

Didn't work, try to figure out why

Can't figure out problem or not my job
to fix problem; call on experts

If trying to fix on phone:

Decide on fix on phone (go to
"Attempt fix")

If expert needs to see actual system:

Give information for expert to look
at problem

Check site documentation of setup
to determine how to identify failing
H W

Give experts information necessary
to locate H W

Wait strategy 1 : partner in fix

Look for problem in parallel to
experts (go to "Search for cause")

Wait strategy 2: give responsibility
to expert

Do something else while they
handle it

Document solution

Document solution and actions taken

o
F I G U R E 12 .11 continued

Consolidated sequence models 259

F I X I N G A P R O B L E M

Document actions
continued

• Make sure affected people hear
directly

• Make self a person to clients

• Make sure problem doesn't happen
again

• Keep from creating future problems

• Make sure full process works

Notify important people directly

Clean up—get rid of temporary files

Notify owners of other parts of the
process to do their part

Done with documenting

Done

F I G U R E 1 2 . 1 1 continued

W H A T T H E U S E R IS U P TO

Every consolidated sequence has a primary intent—the reason why
the task was worth doing in the first place. In the end, no individual
sequence step matters. You can change, eliminate, or automate steps at
will as long as you continue to support the users intent. There are
multiple levels of intent: a system manager's intent in responding to a
call is to resolve whatever problem the user is having. But behind that,
he intends to demonstrate that his organization has the systems under
control. And behind that, he wants to show that he delivers real value
to the corporation and should continue to be funded. Each level is
broader and addresses more wide-reaching issues than the one before.

Every consolidated sequence has numerous subintents that are
accomplished along the way. A subintent allows the user to achieve
the primary intent—if you redesign the sequence,
you may make some subintents irrelevant. That's
okay because they are only a way to achieve a more
fundamental intent. One team discovered that part
of keeping records of lab procedures was to reduce
graphs produced by lab equipment by 50% on the copier so scientists
could paste them into lab notebooks. Through the development of an
electronic lab notebook, the team eliminated the intent of pasting a
paper graph into a paper notebook. They simplified the work to the
point that the intent was no longer relevant.

A system has to allow for
all the users' intents

260 Chapter 12 Using Data to Drive Design

Secondary intents are achieved in the process of performing a
sequence. Unlike subintents, they are important in their own right—
if you get rid of the whole sequence, you'll still have to find users a
way to achieve these secondary intents. So system managers may
depend on users asking them for an IP address to find out what new
systems are being added and what s on those systems. No matter what
happens to IP address assignment, system managers will always want
to know about new systems.

The first design question to ask of a sequence is whether the pri-
mary intent needs to be met at all. If the intent of the whole sequence
is to assign an IP address and you can automate the whole process (or
introduce a network that doesn't require unique address assignment),
then youVe rendered the sequence unnecessary—you've simplified the
job. But before you can eliminate the whole sequence, check all the
individual intents that the user accomplishes along the way. Don't
worry about the subintents—if you eliminate the need for the task,
they become unnecessary. But if you eliminate the sequence, you must
find another way for the customers to accomplish secondary intents or
your system will fail. If you eliminate IP address assignment as a task,
system managers will need another way to find out about new systems.

If you choose to keep the sequence, every intent is an opportunity
for redesign. Each intent indicates something that matters to the

work. If you can provide a way to achieve it more

The system's job is to

achieve intents more

directly

directly, you can simplify the work. When changing
the steps for accomplishing an intent, treat it just as
you treat the overall intent of the sequence: look at
the part of the sequence you are designing away, and
make sure your customers can still accomplish all

the intents that matter to them.
Get behind the specific actions to understand what the user cares

about. One design team was looking at the low-level interaction of
users with a word processor. Analyzing the sequences of interaction re-
vealed constant repositioning of the cursor. Users would click one char-
acter off their intended target, or lose track of where the cursor was, or
be unsure where it would end up if they clicked on different places in
their document. One user kept hitting the right and left arrows in
quick succession. "He's just twiddling his fingers," said one engineer,
and that's a natural reaction if you're not used to looking at pattern.

Consolidated sequence models 261

But other engineers on the team were used to looking at pattern,
and what they saw was a recurring theme—positioning the cursor was
a low-level but constant irritation and an impediment to getting work
done. And this itself was part of an overarching theme of glitches and
problems in the low-level interaction with the system. The team
adopted a design direction of cleaning out all these glitches to make
the interface disappear as a problem, including better ways to provide
feedback on where the cursor was.

H I N T S

Render the primary intent irrelevant
Support the primary intent a new way
Account for all secondary intents
Redesign to support achieving subintents

H O W U S E R S A P P R O A C H A T A S K

Where customers use different strategies to accomplish work tasks, the
consolidated sequence models show what those strategies are. Each
strategy indicates a different approach to the work, driven by different
circumstances or values. The different strategies may be adopted by
different roles, driven by different work styles, and may reflect differ-
ent intents.

Your system needs to recognize the strategies and support them, or
introduce a new way of working that supplants one or more of the
strategies in use. If you choose the latter option,
account for the underlying characteristics driving
customers to choose the strategy you are eliminat-
ing. You might decide that system managers who
continue to work on a problem after turning it over
to their backup experts are wasting their time. But they may do this to
save face—to prove that even though they had to ask for help, they
are still experts and have just as good a chance of finding the problem
as the people they called in. They may do this because they really
want to have someone to talk to about the problem while they work
on it. Or they may just be bothered by the problem and want to find
out what the answer is. In these cases you wont be able to keep people

Support the strategies you

know people use

262 Chapter 12 Using Data to Drive Design

from hunting for the solution on their own. You'd do better to recog-
nize and allow for it.

H I N T S

Eliminate and simplify

steps

• Identify and support strategies
• Don't eliminate strategies unless you can account for the circumstances where people

choose them

U N N E C E S S A R Y S T E P S

After you've decided that your system must support the sequence, it is
your guide to the structure of the task. Look at the steps of the
sequence to reveal the issues for your design. Are there wasted steps?
Are there steps you could eliminate? What role could automation have
in simplifying the work?

The major activities in the consolidated sequence show the coher-
ent units of work the system must support. Use them to guide the dif-

ferent things your system must do and how they
must be arranged to support the work. Look at the
transition between activities. Is there a transition
between roles as well? How will your system manage
the handoff? Does the new activity imply moving to

a new physical place? What needs to be taken to this place, and how
does the customer make the transition? What, in general, disrupts the
transition between activities, and how will you manage it?

Look at the steps themselves. Can you simplify them? Where the
customer currently takes several steps, can you automate them down
to one? Where a step is currently difficult, can you make it easy?
Where is the pain, and where is the tedium? Look for ways in which
technology can streamline the work, but make sure you don't have to
add steps elsewhere (in setup, or loading information to use later) to
eliminate them here.

Consolidated sequence models 263

HINTS

• Eliminate steps
• Automate steps
• Eliminate breakdowns
• Facilitate the transition between roles
• Don't create work no one wants to do

• Achieve intents directly

W H A T GETS THEM STARTED

The triggers show how to alert the user that something needs to be
done. Pay attention to the style of the trigger. Is it noisy or quiet? Is it
appropriate to the work being triggered? Does it
work, or is it a nuisance? Choose whether to dupli-
cate the trigger in your system, if it works, or to
replace it with a trigger that works better. Look at
the difference between users—the designer who
can't stand to have the mail icon blink in the menu bar versus the
writer who has a dialog box come up to announce each new mail mes-
sage. Look at how too many triggers defeats the purpose, as when sys-
tem managers learn to ignore alarms because there are so many and so
many are irrelevant. Choose a way to trigger users that works given
who they are.

Create alerts in ways that
fit people's needs

H I N T S

• Provide triggers for work tasks
• Match style of trigger to appropriate kind of interruption and the user

P R O C E S S FIXES

When the work is internal, the sequence model captures the work
procedure to redesign. Designing a new way of working means,
among other things, redesigning the sequence model so it represents
the new procedures. The organization can put these procedures in
place directly. It's a typical failing of business process reengineering
projects to overlook the secondary intents that are accomplished by

264 Chapter 12 Using Data to Drive Design

Introduce new procedures

to improve the work

the current process—failing to recognize them, the reengineered
process doesn't cover everything that needs to be done, causing people

extra work. By analyzing the existing process in this
way, you increase the likelihood that you'll recognize
and support all the intents that a work process must
support. (We'll discuss prototyping new systems and
process fixes in Part 6.)

P I T F A L L S

Certain problems are typical when automating and eliminating steps.
We've mentioned failing to account for secondary intents—make sure

all intents are accounted for when you redesign. But

Reveal the workings of

automation to gain

user trust

when you automate a set of steps, be aware that users
won't trust that you did it right—at least not right
away. They're going to want to see what you did
until they are confident you won't mess up. Develop-
ers used to insist on seeing the machine code pro-

duced by their compilers—but as compilers have become standard and
dependable, the need to see the machine code went away.

Also watch out for the amount of extra work your automation
introduces. Have you simplified many steps at the cost of vast
amounts of setup and customization? Will the user have to set up the
system like it is a separate task? If so, will any real users do this? And
look at the amount of work it takes to interface with and maintain the
system. Have you introduced a new role, that of the system baby-
sitter, or feeder? If so, will your users be willing to adopt those roles?

CONSOLIDATED ARTIFACT MODELS

Artifact models show the common structure and intents of the differ-
ent artifacts used in the work. They are important for showing both
the detailed conceptual structure underlying a task and how that plays
out when it s made real in the artifact.

W H Y IT M A T T E R S

Just as sequences exist for a reason, artifacts exist for a reason: they
enable customers to accomplish something they care about. There will

Consolidated artifact models 265

be one or more intents for the whole artifact, and then each of the
parts may suggest additional intents.

Look for ways to achieve the intents more directly in the system
you design. When you see a report passed back with notes and ques-
tions scribbled in the margins, you know it supports
discussion, not just reporting. Consider supporting
the communication directly through email and bul-
letin boards. But make sure you support all the
intents—you have to support them all before you
can get rid of the artifact. If you put an existing
artifact online, pay special attention to the informal uses of the exist-
ing artifact—if you make it impossible to dog-ear corners, scribble
notes in margins, or tear off bits to pin to the wall, you wont support
the work.

Beware: an online
artifact can render
informal usages impossible

H I N T S

Support the intent more directly

Support intents indicated by informal usage
Account for all intents

W H A T I T S A Y S

An artifact presents information. Look at the data on an artifact for
insight about the work. Does a purchase request form provide a field
for justifying a purchase, but not for the cost of the item to be bought?
That suggests that cost consciousness is not part of the environment.
Who uses the information? Does the artifact pass information between
people? Does it present the same information to every person, regard-
less of their role or what they care about, cluttering up the interface
with irrelevant information? Is the artifact acting as the communica-
tion mechanism between two roles, to pass the context of a work task?

Consolidated artifacts collapse the history of use across all the
actual events captured by individual artifacts. As a result, the artifact
shows the scope of all the different usages, collecting data, intents, and
concepts into one place. In this way the artifact shows the range of
variation your design must account for and collects all the intents that
matter to the work. It makes sure your design covers all the bases (Fig-
ure 12.12).

Chapter 12 Using Data to Drive Design

Company Name

Department sent to;

person assigned;

date

To:
From:
Date:

Done; date fulfilled;
order number

- ^ 6"̂

< #
Subject:

A)

Type of request

High-level description
vep1

& e
x R e m a r k s :

* 9 t \ ^

Uses
•Make SW request
•Make HW request
•Motivate quick and

specified action
•Facilitate

communication
between departments

•Record information
about exactly what
to order

•Track status
•Track and trace

assignees
•Record what was

purchased
•Remind what to

purchase

Rationale for purchase
to motivate Tdire need")
or justify based on impact on work

Description of what is needed
not vendor or model numbers
assumes knowledge of what already
exists and standard configurations

If h c ï i d t v j r c

Location of where to put new
equipment

Rationale for location

Supplier to buy it from

Estimated costs:

Item Cost

» A
^ „riet

Item Cost
Total

lights
•Can take up to one
year to complete

•Structure is common even
when not required

•Dates provide a history
of when ordered, approved,
and filled

F I G U R E 1 2 . 1 2 A consolidated artifact. This model shows the parts of a pur-
chase request as they might matter to the developers of an ordering system. It shows
the parts, but also their intent and how they are used. An automated ordering system
would have to support the intents implied by each part.

The model reveals that there are two primary intents to the purchase request
artifact: first to justify the need for the item so the requester might actually get it,
and second to communicate exactly what to get and where to put it. Automating
purchase requests depends on understanding and responding to both intents. How-
ever, the description of what to buy is often informal. People assume knowledge of
standard configurations and what has been bought before.

The model shows the parts that a purchase request should have, including
where to put the item, where to buy it, and sometimes the exact model number to
buy. A purchase request that matched a company's formal organization—where the
purchasing department decides where to buy things—would not fit the need people
feel to say exactly what they want and who should supply it.

Consolidated artifact models 267

Look for opportunities to put artifacts online. If the artifact helps
two roles communicate (like a form), can you automate them entirely?
Forms tend to capture all the data that anyone might
ever need, which means that everyone sees all the
data. When the form is used by different people for
different parts of a job, the result can be overwhelm-
ingly complex. When you automate the artifact, can
you collect all the data in one place, but provide to the different roles
only the data they need, so that no one is distracted by irrelevant infor-
mation? Can you provide information automatically (such as cost cen-
ter on a purchase request) that is needed by some people but is not
important to the requester? And what s the communication the artifact
supports? If that communication is discussion, not just data or con-
text, can you support it with communication tools?

Artifacts should provide
only the data people need

H I N T S

Provide data automatically
Share context between roles directly

Support communication implied by the artifact

H O W I T C H U N K S

A consolidated artifact holds distinctions that are indicated by the
structure of the artifact. Unlike the distinctions represented by a se-
quence or physical model, these are extremely particular to the work
the artifact supports. An artifact model won't tell you what you should
build; but once you have decided that this artifact is important to
your proposed solution, it will give you the detailed structure you
need to guide the design.

Each grouping of information on the artifact represents a chunk
for your system to consider. A form might include routing informa-
tion that an online version might automate away—
but you must make sure that the automated form
supports the same kind of routing that the paper
form supports (unless you're redesigning that, too).
Conversely, our calendar model showed the distinc-
tion between meetings and reminders. It showed
that notes are associated with specific days. Distinctions like these
must be carried over into the new design if it is to work well.

The structure
of the artifact reveals
distinctions for the system

268 Chapter 12 Using Data to Drive Design

HINTS

• Use the structure of the artifact to guide the structure of the system
• Maintain the distinctions that matter to users

Presentation matters: it
leads the eye and makes
parts salient

W H A T IT LOOKS LIKE

Artifacts don't consist only of structure and content. They also have a
representation, an appearance, which is designed to support the work

the artifact is used in. Look at how presentation is
used to further the intent of the artifact—or how it
gets in the way. When a part is made to stand out,
it's intended to catch the eye—how will the analo-
gous artifact in your new system catch the eye? Look
at the different ways of making a part stand out. Do

they represent different intents, or are they different ways of achieving
the same intent? Is standing out the only intent, or are there sec-
ondary intents to consider, just as a newspaper headline both stands
out and reflects the overall look and tone of the newspaper?

Take presentation seriously. It's often treated as secondary, but
people work hard to make the things they use look right for the work.

H I N T S

• Determine the intent of the presentation details
• Mimic the intent of presentation details, not the details themselves

Dont just duplicate an
artifact online

P I T F A L L S

Artifacts, because they are real, suggest that every part is needed and
every part is relevant. Look beyond the artifact itself to see what's use-

ful. Are all parts of a form used? Is any part of the
form used, or is the real communication written in
longhand over the top? Even if the data is used, does
everyone need it, or would it be better to give differ-
ent roles their unique views? And make sure that an

online version of the artifact doesn't break it up too much. If every
part of the artifact maps to a different dialog box, it will be hard to see
all the information together.

Using metaphors 269

U S I N G M E T A P H O R S

Explore parallel work

domains to discover

problems and

opportunities in yours

We discussed metaphors briefly in Chapter 4 as a way to think about
work structure while setting focus for a project. As you study the
work, you may find that these or other metaphors continue to be use-
ful and enlightening. If so, consider redesigning the work explicitly by
following the structure of the metaphorical work domain (Kensing
andMadsen 1991).

For example, anytime the work you are supporting involves mak-
ing things—software development is a prime example—housing con-
struction is an interesting metaphor. As a team, draw
a flow model of the roles in building a house. Look
at the architects relationship to the homeowner on
one side and the primary contractor on the other.
How does he or she mediate between the two? How
does the architect communicate with the homeown-
er, and what representations show the homeowners
what they will get? Where does the architect's responsibility leave off
and the contractor's take over? Look at the emotional tone of the rela-
tionships. Architects and contractors frequently argue over what to
build and how to build it—contractors have to work out the details of
the architect s specifications in lumber and concrete.

Then use these questions to drive how you restructure the actual
work you are supporting. Where is the architect role in software devel-
opment? Do "software architects" play the same role
as building architects? Do they create the same sense
of partnership with the customer? How would you
redefine the software architect role to incorporate
more of the user focus of a housing architect? What
tools do architects use in working out designs and in
managing their relationships with client and builder? Could the intent
of these tools be carried over into a system for software architects?
Architects use a wide variety of props to help communicate with
clients—floor plans, elevations or front views, perspective views, and
complete three-dimensional models of the proposed house on its site.
Do software architects have the same range of representations avail-
able to them? Could you create similar representations to improve
the communication between software designers and users? Should

Metaphors break you

out of the weeds of your

own focus

270 Chapter 12 Using Data to Drive Design

Steal and transform ideas
found in a metaphor

software architects record their agreement with customers in a con-
tract similar to that used by architects?

This inquiry just scratches the surface of the home building
metaphor—you'd also want to look at the relationship between archi-
tect and contractor, and between contractor and subcontractors, to
begin with—but it gives some sense of how to use the metaphor to
drive your thinking. You may find that you need to understand the
metaphorical work practice better to use it well. (How do architects
and contractors really work together on a day-to-day basis?) If it's
worth it, do some interviews in the metaphorical work domain; other-
wise, find a more familiar metaphor.

Look for work domains that parallel the domain you're designing
for. One team supporting home finances decided the roles were like

the pilot and navigator on a plane: one person did
the day-to-day work of keeping the finances on
course, while the other got involved when deciding
how, over the longer term, to get where they wanted
to go. Another team decided that the order process

in their company was like asking someone else to shop for you in a
household. All the problems they saw in the interactions with the pur-
chasing department mirrored the problems of getting someone else to
understand what you want. Recognizing such a metaphor gives you a
handle on how to support the work in new ways.

U S I N G MODELS FOR DESIGN

These discussions of work models and parallel work practice should
give you a guide in thinking about the implications of existing work

practice for design. The models lay out different

Prepare the team brain:
inquire into models and
metaphors

aspects of work in front of you so you don't have to
hold it all in your head; doing the inquiry into one
model after another helps you synthesize across the
models, see overarching issues and pattern, and
begin to put common solutions together. Discussing

the models and possible metaphors in the team leads to shared under-
standing and perspectives. Through these discussions, teams start
thinking about the design response, not just by responding to specific
work problems with specific features, but by responding to the whole

Using models for design 271

work situation with a coherent system. By the time they get to actual-
ly designing, the team is so steeped in the data that they cant help but
respond to it.

Through these activities and discussions, the team together works
down the chain of reasoning from the facts in the work models,
through interpretations, implications for the design, and finally specif-
ic design ideas. Well present an orderly process for doing this in the
next chapter.

This page intentionally left blank

Design from Data

G oing from customer data to a design requires a creative leap, a
leap from what matters to what to do about it. Customer data

never dictates exactly what to design. Any set of facts can be taken
multiple ways, used to inform different kinds of decisions. A product
designer looking at a salesman's role might see how to provide informa-
tion and tracking tools appropriate to life on the road. The division
manager might see the frustrations and constraints of the job and how
to alleviate them through training and communication sessions with
individual salespeople. Upper management might see the constraints
imposed by the organizational structure and how the sales role and
relationship of sales to the rest of the organization might be redefined
to make them more successful. Each different point of view reveals a
different set of issues and different solutions.

The range of solutions a design team considers depends on who is
on the team and the perspectives they take—the skills and knowledge
they have available to them, the charter they think
they have from management, and their shared
assumptions about what they are up to as a design
team (Gomaa 1983). Teams can't invent solutions
that they don't have the knowledge to create, don't
feel they have permission to carry out, or don't see as
being their job. Shrink-wrap software developers
won't think of restructuring the organization as part of their design—
but even a team chartered to reengineer a business process won't think
of restructuring the organization if they don't have the skill to see and
design process and if they don't have the backing of management. A
cross-functional team makes the widest possible set of skills and per-
spectives available, and increases the range of solutions they can con-
sider. But that solution creates its own problem: team members tend

Teams cant invent
solutions that they dont
have the knowledge
to create

274 Chapter 13 Design from Data

Evaluation stifles creativity

to pull in different directions, with individual members emphasizing
the issues and ideas they see. It's up to the design process to unite the
team behind a single corporate response. (See Kelley and Hartfield
[1996] for further discussion of using multiple points of view to drive
invention.)

Getting the team to be creative is tricky. We want the team to
think widely, "out of the box." Yet it's in an engineer's nature to im-

mediately do a feasibility estimate of any idea they
hear of or invent. That's why they respond so fre-
quently, "We can't do that." Until the entire design
for doing it is worked out, the idea does not seem

doable. Then the same engineer who said it was impossible Friday will
come in Monday morning and announce that it's done. It's not possi-
ble to be creative when every idea gets immediately put to the test—
and a truly creative idea may well require a substantial time to investi-
gate whether it can be done or not. We often find that the idea we
thought was a pipe dream when it was first mentioned turns out to be
easy when the implementation is designed. So there's no advantage to
filtering ideas early

On the other hand, part of being free to think widely is to feel
secure that you won't be committed to implementing the things you

think up. We encourage people to think broad, wide,

Knowing that evaluation

will happen later sets

creativity free

and radical first, without worrying about how to
implement their ideas or fit them with existing prod-
ucts. Once you've had the radical idea, you can
reduce it to its core intent, decide what's important
about it in supporting customers, and scale it back to

what's practical in limited time. Following invention, the process pro-
vides many evaluation steps within the team and with customers to
ensure that the design works for the customer and can be implemented
by the people in your organization. Knowing these steps are coming
frees the team to step outside the bounds of what they know to be safe.

In Contextual Design, a team walks through a series of activities
intended to get them over the hump of having a broad understanding
of their customers' work practice but no agreed solution, to a clear
sense of what problems to address and an innovative design to address
them. Contextual Design provides a set of steps, linked together into
a process, that move the team to a concrete representation of their
shared direction, or vision:

Walking the data 275

Walking the data: to see the different aspects of work and syn-
thesize them mentally

Visioning: to invent multiple possible responses to the data
Evaluation and integration: to develop a single corporate response
Concurrent action: to move all parts of the organization forward

in parallel

W A L K I N G T H E D A T A

The first activities are designed to explore the data and its implications
for the design. At this point we aren't looking for specific design solu-
tions; we just want to enable team members to think about the data in
detail and explore all the different ways they might respond to it. Just
as we set focus before going on an interview so people know what to
look at, we use these activities to set the teams focus for design so they
know what to build. When the customer data is understood and
internalized, team members will find it natural to design solutions
that respond to the primary issues it raises.

The first activity for immersing yourself in the data is to read the
affinity from end to end—what we call "walking the wall." Walking
the affinity right before visioning ensures that the

Anyone who visions

must be steeped in the

customer data

customer issues are fresh in the designers' minds—
that the solutions they invent will be grounded in
the customers' work practice. Then when they
review each other's ideas and see how other people
are reacting to the data, they start to build a shared
sense of how to respond. We discussed the detailed process of walking
an affinity in Chapter 10—everyone who will be involved in the
visioning session walks the affinity this way before visioning.

After walking the affinity the team uses the consolidated work
models to do the same kind of thinking as the affinity on the different
perspectives on work. Each model represents a different point of view,
a different dimension of work practice. When people walk one after
another, they naturally synthesize all the different dimensions into a
single three-dimensional picture of the customer. The previous chap-
ter discussed in detail the kind of issues the team might consider for
each type of model; designers do this individually or in small groups,
discussing the model and how they should respond as a team. Each

276 Chapter 13 Design from Data

Walking the data creates

a team focus for the vision

Lists bring possibilities

to mind

model will generate a set of goals: values to encourage; negative feel-
ings to eliminate; roles and activities to support, combine, or elimi-
nate; and so forth.

Once individuals or small groups have discussed each model, they
share their discussions with the rest of the design team, and the team
marks parts of the model that they want to support or eliminate. At this
initial stage when the team is still deciding on a design direction, they
are more interested in the "what matters" type of issue than the struc-
tural issues. So they look at flow and cultural models in detail; they look
at constraints and primary intents on the physical; and they look at
intents, activities, and strategies of high-level structure in the sequence
and artifact models. As they read and discuss each model, issues from
the other models and from the affinity are naturally incorporated into
their discussion. What started as point solutions to individual problems
weave together into a synthetic response to the whole work problem.

Walking the affinity diagram and work models focuses the team on
specific aspects of work they want to respond to. The team can have an

explicit and public conversation, recording the issues
right on the affinity and models. You can include oth-
ers in the discussions by allowing them to participate
in reading and responding to the models. And they
ground your vision for redesign in real work issues.

After walking the affinity and each model, crystallize your think-
ing by making a list of the most important issues from that model.
This gives you a single, crisp statement of the issues that you can
return to as a reminder of your focus for the vision. When the lists are
made, the team is primed to start the vision.

P R I M I N G T H E B R A I N

Before starting with the visioning, the team brainstorms two lists,
with no evaluation or filtering, that will be fodder for the vision itself:

Technology: Any design response uses technology to solve work
problems. To bring the technology they have available to mind,

teams list all the technology they might draw on.
This list incorporates the mundane (networks,
World Wide Web), specialized technology unique to
the company (artificial agents, CAD diagramming),

Creating a vision 277

and implementation approaches that the team might otherwise not
think of (process design, business partnerships). Anyone on the team
who doesn't know about any of these possibilities can learn about
them at this point.

Starting points: Discussing the work inevitably involves dis-
cussing how the team might respond to it. These initial discussions are
starting points for the vision. In this list, we capture some of the most
important starting points that people don't want to forget: design ideas
that have captured the imagination of team members, a slogan that the
team wants to commit to, or a metaphor for what the work could be
like. "Put the system manager's whole job on a PDA." "Ordering
should be one-stop shopping." "The lab should be like Federal Express
tracking packages—you always know the state of every experiment."
"Do shopping like bumper cars." Each of these ideas is a seed, a start-
ing point for the team to elaborate into a whole approach to a design
problem.

CREATING A VISION

We call our visioning process a grounded brainstorm—"brainstorm"
because ideas are not evaluated as they are generated and "grounded"
because ideas are driven by the customer's work
practice. A visioning session gives a team the chance
to choose a starting point and spin it out into a
story about the new work practice transformed by
technology. The story describes the brave new world

Choose a seed to start

the vision

the team envisions—without committing them to actually building it.
(Greenbaum and Kyng [1991] describes a variety of approaches to
inventing new work practices.)

In the visioning session, one person (the "pen") stands at a flip
chart, drawing the ideas as participants throw them out. The pen has
two roles: encourage people to talk, but also fit their ideas into the
vision as it is developing. Unlike a normal brain-
storm, where each idea is independent, a vision ses-
sion starts with one of the ideas from the list of start-
ing points and incorporates each idea into a coherent
story about the redesigned work. The vision is a
drawing showing what the new work practice would

The "pen" weaves the
teams ideas into a story of
new work practice

278 Chapter 13 Design from Data

The facilitator triggers
inclusion of issues the
team identified

be like if the vision were in place (Figure 13.1). It shows people in the
roles they play, the systems they use, how they communicate with each
other and the systems, and how the systems are structured when that's
necessary to thinking about the vision. Vision pictures are very infor-
mal—they are drawn quickly, without a lot of structure. They tend to
have lots of arrows showing communication, lots of faces showing peo-
ple, and lots of boxes indicating screens, systems, or other technology
components. They aren't restricted to the system being designed but
may include the delivery mechanism, third-party relationships, and
additional services that work together to make the vision possible.

Any vision has a thread, which starts with the initial starting point
and then is played out as participants expand on it. A
facilitator helps participants pursue a thread by tying
together ideas into a story of work practice and sug-
gesting additional issues from the work models or
affinity, additional roles from the flow model, or val-
ues the team agreed to from the cultural model:

Pen: So we're starting with the idea that shopping is like
bumper cars. (Draws a bumper car.) What happens?

Designer (Dl) : Well the whole idea is to get the kids
involved. So the kids have to be able to drive. (Pen draws a
kid at the wheel.)

Another designer (D2): Yeahy put the adults in the passenger
seat. Then organize the store so you can drive through it in
order (Pen starts sketching the store.)

D 3 : And make the aisles narrow enough so you can pick things
off both sides as you drive by. (Pen draws aisles on either
side of the car.)

D 1 : You 11 have to make all the aisles one-way.

Facilitator: But what about backtracking? We saw people have
to go back for things they forgot.

D2: We'll give them a way to backtrack at the end of the aisles.

The facilitator and the pen should listen for ideas that are on the
thread, postponing ideas that are too far off the main line to be start-
ing points for another vision. When an idea conflicts with the thread
the team is working on, the pen adds it to the list of starting points.

Creating a vision 279

This keeps the thread coherent while assuring the team member that
his idea has been heard and will be dealt with. Eventually the thread
will play out—people wont have more ideas for extending it without
taking a new starting point. At this point the vision is put aside and
the next one started. Don't duplicate ideas from vision to vision—
good ideas will be recovered in the next step, so you don't need to go
through them again.

Practicality is not a major consideration for a vision. If the team lets
go of worrying about whether they can build their ideas immediately
they will be more creative and produce a vision that will account for
more of the work practice, more coherently. Our team above is unlikely
to ship a product that installs bumper cars in grocery stores, but work-
ing out the vision gives them a chance to explore issues of child control
and participation that are very likely to be part of their final design. Bal-
ance creativity against practicality. After visioning bumper cars and
some other fanciful ideas, the team might want to evaluate and consoli-
date them into a more conservative vision capturing the key benefits but
using technology they think they can implement.

Any vision will specify more than the team wants to attempt in a
single version, but that's all right—it means the team will have a plan,
a strategy, that they can use to drive delivery over
several versions. (We'll talk much more about strate-
gic development over several versions when we
introduce the User Environment Design in Part 5.)
Even if you know you are focused on a short-term
deliverable—say, your next update due to ship in six
months—you're better off thinking and visioning widely first. Then
you can either synthesize and pick and choose the best parts for the
deadline, or you can vision widely and then vision explicitly for a six-
month deliverable. You'll find you automatically pull in ideas from the
wider visions to put together a coherent plan that you can do in the
time you have (once you do the inevitable trimming).

A good visioning session is a lot of fun. Everyone is tossing in
ideas for what to do based on what matters in the work. Everyone is
talking at once and building on each other's ideas.
The major gating factor for a visioning session is the
ability of the pen to draw what he or she hears with-
out a lot of filtering or explanation. If people feel
like it's too hard to get their ideas on the paper, the

A vision encompasses
more than the team can
ship in one version

In a good visioning
sessiony everyone feels their
ideas have been heard

280 Chapter 13 Design from Data

See screen
of failure

Can take action to
affect system

directly

See screen of
failure

V " ,
Remote expert

Speakerphone

Can take action to
affect system

directly (reboot,
installation

See each other's
actions mirrored

on screens

Speakerphone
with HELP

button

Help button
dials directly
Supports
parallel
conversation
while looking

Context of user
and their system

on screen

Phone rings to
report problem

•DB of problem
stories

•Log of probiems|
solved

Time on problem
clocked automatically

Story of other problems,
search by topic

Responsible
person

Speakerphone
—Hear stories of
similar problems
while working

Tell story of this problem
^ ^ - a n d solution (via

* ^ phone or dictaphone)

Stories from DB for training;
by topic and system type

On tape for later listening.

»

Responsible person's screen
See
—My screen
—User's screen
—User's system configuration

>Touch one part and go into
related system

>Perform commands on
user's system

>Pass docs and forms to user;
user sees them immediately

>Variant for sharing screen
with expert

New person
or TAG

Creating a vision

F I G U R E 1 3 . 1 A vision for system management.1 In this vision, the team has
elected to focus on improving the communication between user and system adminis-
trator and on improving the diagnostic process. The vision started with the idea that
the system administrators wanted to bring the problem to them, to make everything
necessary to solve the problem available locally. In following the story, the team inte-
grated a number of other issues—how to make it easy for users to get help, how the
system administrator can get backup help, and how to use stories in diagnosing
problems.

In the vision, when a user wants help with a system, they just push a big red
"HELP" button on their phone. That automatically connects them with the right
person for their system and organization and brings up their system information on
the administrators screen. The team wanted to make asking for help through the
"approved" mechanism so simple that no one would be tempted to use personal or
informal contacts to go around it. They found that having enough context about the
user and system was a major impediment to administrators in providing support—
researching the system was always the first step toward doing any real work—so they
had the system provide as much context as possible. When the time comes to imple-
ment, the "HELP" button will probably not survive as visioned—it's not reasonable
to make changing every phone a prerequisite to using this system administration
software. But the idea will prod the team to think about simpler ways to achieve the
same intent—perhaps stickers to put on the phone with the right number, or auto-
dial in the software for computers that support it. The vision is a stake in the ground
saying, "This is the goal." The team can scale back and decide on reasonable ways to
achieve the goal later.

To support diagnosis, the team noticed that system administrators depend on
story and anecdote a lot when troubleshooting. Stories capture knowledge about
what might work in different situations, but capturing the stories and making them
available is hard. Typically this is done through tale swapping in the informal system
administrators' community. Even when people capture a log of what they did, it
doesn't have the same flavor as a story—it doesn't include the different alternatives
tried and the frustrations of trying to work things out. This vision attempts to cap-
ture stories and make them available when needed, while diagnosing another prob-
lem, through a database of stories. When done with a call, an administrator can tell
the story of what happened into the phone—they are used to dealing with the
phone. Later, they can search the database for stories relevant to the problem they are
working on—perhaps from the same system or showing the same symptoms. Then
they can listen to the stories while working on the problem. The challenge of the
"story database" is not so much technical—it just depends on recording and playing
back speech—as it is being able to capture enough information about each story so
that the subsequent search picks out relevant stories.

This vision shows how even radical solutions to problems can be based directly
on understanding the structure and nature of the work.

1 This vision was generated by us for inclusion in this book. It's a disadvantage of work-
ing in a highly competitive industry that most of the data used to develop actual prod-
ucts and internal systems is considered too proprietary to release.

282 Chapter 13 Design from Data

Creating a common

vision is not a compromise

Identify the positive and

negative parts of each

vision

session will be frustrating for everyone. For the same reason, limit ses-
sions to about 10 people—more makes it hard to get air time.

Expect to elaborate on each idea for about half an hour, then
move on to the next. Keep going until you have at least three or four
alternative visions, each on its own flip chart paper.

C R E A T I N G A COMMON D I R E C T I O N

Doing multiple visions lets the team consider alternatives and work out
some of their implications. Each vision is built by the whole team and
incorporates everyone's different perspective. But at the end of a vision-
ing session, you have multiple visions, each suggesting a different
design direction or addressing a different part of the work. How do
you choose among them?

In Contextual Design, you don't have to. Instead, you synthesize a
new solution incorporating the best of the individual visions. Commit-

tees have the reputation of producing mediocre
designs because people compromise; instead of doing
either of two reasonable designs, they settle for some-
thing halfway in between, or they incorporate a few
features to make everyone happy. Synthesizing a

common vision is a way to avoid this. Rather than compromising on
features, producing a design with a little something for everyone, the
goal should be a design that is coherent and clean and that supports
the work issues everyone identified.

The key to such a design is to treat each vision, not as a monolith-
ic block that must be accepted or rejected as a whole, but as a collec-

tion of options that can be reconfigured and
redesigned into a single solution. If the team had to
choose one option over another, they would argue—
each person would have their own preference as to
how to trade off different issues. But it's a false
choice. Every vision will have impractical or unde-

sirable elements; most visions will have some elements you don't want
to lose. Create a better solution by identifying elements that work,
recombining them to preserve the best parts, and extending them to
address more of the work and overcome any defects. The individual

Creating a common direction 283

visions become databases of design ideas that you can draw on and
recombine to come up with a better solution.2

We do this through a structured evaluation of each vision. Look at
each one in turn and first list the positive points of that vision—the
reason why it s good, fits the customer work situa-

As soon as you list
negatives, people start
fixing them

tion, solves real problems, is easy to build, or fits the
skills of the organization. Even people who dislike
the vision overall can find points about it that work;
people who are particularly against it are on the spot
to identify some points they like. List each positive
point on a sheet and attach it to the vision. Then list the negative
points—all the reasons why it would be hard to build or would break
the customer's work practice. People who love the vision can find a
few points to dislike—it will help them to let go of an idea they might
be overly attached to. List these negatives and attach them to the
vision as well. List positives and negatives for each vision in turn (see
Figure 13.2 for an example of the system management vision). While
you're listing negative points, people will tend to start solving them—
to suggest ways that the potential problem can be overcome. These
ideas become important in the next step of the process, but don't let
them derail you now. Write them on Post-its and stick them to the
vision to save them for later.

Then look across the visions and at the positive points. Use them to
identify the core parts of each vision you don't want to lose. Then look
at how to combine these points into a single coherent
vision. The team will be primed to do this as a result
of the discussion of positive and negative points.
They'll already have ideas for how to recombine the
vision. Usually, most of the elements of the visions
don't conflict directly—because each vision took a
different approach, it will be possible to bring the best parts together
without conflict. Where parts you like do conflict—two different

This process is based on the ideas underlying Pugh matrices (Pugh 1991). But
where Pugh depends on individual creativity, we use the dynamics of the group to
produce a single vision that incorporates everyone's perspective. This helps keep
people from getting overinvested in one solution. People who feel they can't be cre-
ative in a group situation still have the option of working out a design and feeding
it into the evaluation process.

Invention is driven

by recombining existing

good ideas

284 Chapter 13 Design from Data

Positives

+Tracks time automatically

+Provides access to similar
stories

+lt's easy to document

actions taken

+Fast access to help

+System manager is given
what's needed to solve the
problem

+Database of stories
addresses the training issue

m

Negatives

—It's hard to search through

verbal text
—What if the user's not in
their office?
—What if not all phones are
hooked in?
—Need a realistic way of
mimicking the HELP button
—What if the responsible
person isn't there?
—Will people really tell
stories of what they've done
into the phone?

F I G U R E 1 3 . 2 Positives and negatives for the system management vision.

The group process builds
consensus and reduces
overinvestment

ways of addressing the same problem, for example, when it doesnt
make sense to do both—you'll have to choose. But now it's a very
focused choice on specific aspects of each vision. If they both support
the work well, choose the simpler or the easier to implement. If you
aren't sure which is better for the work, use the ideas to identify what
data will help make the choice and set up customer interviews to col-
lect it. (We'll discuss working out the ideas with customers in detail in
Part 6.) The final step of visioning is to draw the new consolidated
vision reasonably neatly.

This whole process is designed to bring a disparate, cross-
functional team of people to consensus. If some team member is

hooked on an idea, be sure to include that idea in
the list of starting points. In one team, one member
was hooked on the idea of a large monitor display-
ing test states in a scientific lab—it had gotten to be
a joke in the team that this was his solution for
everything. Making the large monitor the core of a

vision and then doing positive and negative points (he had to come
up with three negatives) made it clear what real advantages the large
monitor offered. But comparison with other visions revealed that
those same advantages could be achieved more simply. In the end, he
didn't have a hard time letting go of the idea.

Making the vision real 285

M A K I N G T H E V I S I O N R E A L

The code is only one component of a product. A commercial product
also includes the documentation and services that help people use it,
the marketing plan that publicizes it, and the testing

The vision directs

concurrent activity

plan that ensures its reliability. Internal systems
downplay marketing and services, but they still have
to help users take advantage of the product, tell them
about it, and get buy-in. Internal systems also have
to roll out the infrastructure, new procedures, and new organizational
structures that will take advantage of the new system. With the vision
in place, all functions can start working on their parts in parallel. They
can first look to see if they can do what the vision requires at all reason-
ably; this may require technical investigation or may require going for
management buy-in. Once the team knows what s involved in doing a
piece of the vision, they can choose to attempt it, leave it out, or scale
it back so they get the underlying benefit of the piece in a simpler way.
Then, once they've decided what part of the vision to work toward for
this project, people can work out in detail what's required for their
part. All through, the vision acts as a map that keeps the groups coor-
dinated even while they work independently.

PROCESS AN D ORGANIZATION DESIG N
Particularly when the system is for internal use, the vision may imply
changes to business processes or business organization. The vision
offers a new way of working, and the business structure may have to
change to adopt that way of working. Salespeople may have a differ-
ent reporting relationship to the home office. The purchasing depart-
ment may no longer be an intermediary in making a purchase. Walls
between offices might be knocked down to provide team rooms. Plan-
ning for these changes can proceed in parallel to the software and
infrastructure development activities that will support them (though,
of course, the implementation of any changes must be synchronized).

The vision can help a commercial vendor redefine how they do
business as well as what products they deliver. Commercial vendors can
mine their visions for implications on new delivery mechanisms, how
customer service is viewed and how to improve it, and how to improve
the sales channel to address issues that get in the customer's way. If one

286 Chapter 13 Design from Data

The vision

directs organizational

restructuring

customer's issue is how long delivery takes, the delivery service might
be changed. If salespeople are used as information resources by their

customers, formalizing the information provision as
a service might be part of the vision. If technology or
products developed by a third party are important to
the vision, the organization can start to create rela-
tionships with these other companies.

The vision drives

marketing techniques to

develop the business case

M A R K E T I N G P L A N S

Marketing builds the market message around the vision and consolidat-
ed models (and later the User Environment Design, described in the
next part). The consolidated models show what customers care about
and what message will interest them. Marketing can build scenarios
from sequences and base the story of the new world on the vision. The
vision captures the key innovations that constitute the substance of the
market message. And the User Environment Design, especially when
organized into components, gives marketing a way to communicate the
design as providing coherent support for particular aspects of the work.
This message communicates directly to people's experience; talking
about features and benefits presents the system more abstractly.

The vision shows what customer characteristics make the difference
in whether they will be interested in the product or not. The models

capture qualitative data about customers—now mar-
keting needs quantitative data to decide whether the
product is viable. The vision drives surveys to size the
market and make the business case: test how many
customers have those characteristics and how much
they are likely to spend. As engineering finishes more

of the designing and prototyping, these can be incorporated into the
marketing events and used as the basis for focus groups, test drives with
customers, and so forth. Marketing can also use the vision for prioritiza-
tion—they can split it into components and decide which components
to ship together for a coherent product, and in what order.

S Y S T E M D E S I G N

The vision defines what is expected of any software and hardware
components of the system. Engineers can get an advance look at
what demands on technology the system will make. They can start

Storyboards 287

investigating technological possibilities immediately including possible
platforms, whether specific technology is sufficiently reliable and
whether it can meet the requirements of the vision,
and UI possibilities. Then, when the decision is made
to proceed, the rest of system design is based on the
vision and consolidated models, as we shall see.

The vision drives technical

investigation and

hardware requirements

STORYBOARDS

A vision drawing captures the new vision as a single picture, showing
all parts of the vision together. It says what the new work practice will
be without showing how it will happen over time. But to design well,
we want to work out the system design in the context of doing work.
We want to see how it fits into the overall work task to ensure that the
transition into and out of the system works and that the task stays
coherent. We do this by working out the vision in storyboards. (This
approach to deriving system requirements from usage is becoming
popular in the industry; see, for example, Carlshamre and Karlsson
[1996];Jacobsonetal. [1992].)

Storyboards show how specific tasks will be accomplished in the
new world. The technique was originally borrowed from movie mak-
ing and has been used by others to work out system designs.3 A story-
board captures the new procedure for doing a task pictorially, like a
storyboard for a film. Each frame in the storyboard captures a single
scene—an interaction between two people, a person and the system, a
person and an artifact, or a system step. The storyboard frame might
show the people interacting and the content of their interaction. It
might sketch a system screen with annotations showing how it's used
at this point. It might sketch the artifact and how it's used. Or it
might just list the actions the system takes on the user s behalf.

Storyboards are based on the vision, follow the structure of a con-
solidated sequence model, and pull implications from other models as
necessary. The vision defines what the new work is like; the consoli-
dated sequences define the structure that underlies doing a task and

3 Contextual Design is often useful as a framework giving structure to the front-end
life cycle, which other techniques can plug into. In this spirit, we've adopted story-
boards as a useful technique for working out a design (Rheinfrank and Evenson
1996).

288 Chapter 13 Design from Data

Storyboards tie the vision
to the structure of the
consolidated sequence

Draw all steps: manual
systeniy and UI

A UI sketch shows how
people will use a system
during a work step

the intents people achieve in doing it. To build a storyboard, choose a
task to redesign that is represented by a consolidated sequence. Then

review the models and affinity, gathering issues rele-
vant to this task. Collecting the issues resets your
focus, allowing your mind to design from all the
issues at once.

Then sketch out how you want to redesign the
task. This is a more detailed vision, focused on the

work of this task and constrained by the larger vision. In this step, you
work out the exact approach you'll take to dealing with the different
issues. Sketch out two or three options, do positives and negatives,
and consolidate one approach. Do this quickly—it's more focused and
can be fast.

With the detailed vision drawn out, walk through the consolidated
sequence step by step. Look at the intents, different strategies, and steps.

Account for the intents—if the first step of diagnosis
is to find out more about the system and its history,
any new system should account for this need. You
could support it, by displaying system context auto-
matically when a call comes in; you could eliminate

diagnosis by implementing an expert system that can always figure out
what's wrong; or you could decide that they have ways to get context
already and you don't need to give them more, and leave this step man-
ual. Look for ways to overcome problems and achieve intents more
directly, within the context of your detailed vision.

Capture the work practice as you've redesigned it in the story-
board, including interactions with the system, interactions with other
people, and manual steps. The goal of the storyboard is to represent
the whole work task coherently, so don't limit the storyboard to only
those steps that interact with the system. Sketch storyboard frames to
represent each step of the new work practice.

Because each frame of a storyboard is a sketch, it limits the
amount of detail the designer can squeeze into that frame. This is

intentional, just as the sketchiness of the vision is
intentional. By its nature, a storyboard inhibits the
designer's natural tendency to dive down into the
low-level detail of each part of the system before the
whole system has been roughed out. A screen sketch
in a storyboard isn't a specification for the UI of that

Redesigning work 289

screen—it s a thinking tool enabling the designer to work out what
has to happen in the user's interaction with the system at that point in
the task. The UI sketches in the storyboard communicate ideas to the
UI designer, who will create a consistent and comprehensible UI for
the whole system later.

We usually build storyboards in pairs. After finishing the whole
task, the pair brings the storyboard back to the whole team for review.
They walk through the storyboard, and everyone posts issues on the
storyboard: mismatch with the customer's work practice, mismatch
with the vision, alternative design ideas, or implementation worries.
The pair then reworks the storyboard to account for the issues.

A set of storyboards for the key tasks to be supported in a new sys-
tem defines how the system will work in supporting those tasks. By
telling the whole story of the task, including manual
steps, automated steps, and interactions with the sys-
tem, the storyboard keeps the work task coherent. Sto-
ryboards work out elements of the vision by un-
raveling them, laying them out step by step. They
provide the next level of detail for the design. In work-
ing out the storyboard, all aspects of work come together: roles interact,
people move around and pass artifacts, and culture influences every-
thing. The storyboard synthesizes all these issues into a coherent redesign
of a work task within the context of the overall vision (Figure 13.3).

R E D E S I G N I N G W O R K

This is what it means to redesign the work: First, understand the struc-
ture of work as it exists and the issues implicit in the work. That will
tell you what to address. Become knowledgeable

Storyboards capture all
the steps needed to do the
redesigned work

The vision and
storyboards guide the
corporate response

about possibilities for redesign, either by learning
about different possible technologies or bringing
experts into the room and steeping them in the data.
Then vision a new world, using the knowledge of the
team and building on your understanding of the
issues. Once that's done, you can work out the implications of that
vision in storyboards that show individual instances of doing the work.

The vision holds your corporate response. It shows how all the
different actions you might take as an organization work together to

290 Chapter 13 Design from Data

faÛ ftïÉtH

^

P.ltlklSA. C
..'user ùuv iiui-'

SLiStoK'ikS^ irrtj

Lrjûdl LÙiVL: SL|stan, ù pssîbu.

0 llü-p

Vä) User cOfCtcvf pops iH scr.cùL

'0
^■/V^

Lou'Cicdiit'ic.

. U H ^ U . l f

■Valens SLjSliiii [dur^"
pvRwiis

LlScr:

Vi See tfic si|stüu iiLsföri)

S\v: «ACci V.O.2

bi-|S"Üiit iToHùns:
T —~

^Ctirclt Ls l

F I G U R E 1 3 . 3 A storyboard for the system management vision. This storyboard
follows the structure of the consolidated sequence for dealing with a call for help. At
each step, the storyboard reinvents how that step would be accomplished given that
the user can take advantage of the new system.

address the user's work problem. With a vision in place, the different
functions of your organization can work together toward a common
goal. Each function then will follow its own process to work out the
implications for its part. In the rest of this book, we'll discuss the
process for engineering to develop the system itself.

Redesigning work 291

K E L L Y ' S STORY

Everybody talks about spending a day in the life of the customer, but its very hard to do
and get meaningful data. IVe tried a lot of different processes and have found that the people
who participate get insight, but there's no way to capture it, communicate what you learned,
or use it again on the next project for the same market. Contextual Design is unique in that it
gives a framework and models to capture the data in ways that are more meaningful than any
other process IVe used. It supports sharing and communicating the insight and lets others par-
ticipate in a way they cannot otherwise.

Tm a product manager in a group building large computer systems. We wanted to address
a new market segment with our product line, but we had not spent much time understanding
what was important to these customers. We used the whole Contextual Design process, with a
cross-functional team drawn from marketing, R & D , and manufacturing, and external facilita-
tors to guide us.

We interviewed about 1 5 customers; consolidated the models and affinity; visioned new
product, service, and delivery ideas for the market; built a User Environment Design for some
parts; and used prototypes to test the ideas. We found the cultural model particularly useful for
defining our marketing objectives, including defining the value proposition for the market.
The other models were more useful to R & D in building the actual products,

The vision we produced drove marketing requirements for several different organizations.
Producing a computer system for this market requires the combined effort of several software
organizations, two hardware organizations, manufacturing, and service organizations. For
example, we discovered how critical it is in this market to be able to add capacity easily—this
recognition drove hardware requirements for ease of installation, software requirements for
dynamic reconfiguration, and a manufacturing requirement for 48-hour turnaround of a new
order. That will require process changes in the manufacturing organization, but they've put
together a task force to figure out how to do it.

For us in marketing, the strongest part of the process was through visioning. This project
wasn't driven by the engineering organizations, so we didn't have enough commitment to the
results. No one organization felt their business depended on the success of the project. We could
get individuals to buy in, but it was harder to affect the plans of the whole organization. So we
found it easier to communicate the results of the vision using our traditional methods. We are
getting the changes we designed into products to be delivered over the next 12 to 18 months.

I have to say that none of us had a clue how much time and energy this project would take,
particularly since we had no data to start with. The results were well worth it, though. If we
hadn't done this work up front, we would have had to do it later, when plans are harder to
change. We're planning to use Contextual Design on our next project, but augmented with other
marketing techniques and contextual interviews with people who make the buy decision. J

This page intentionally left blank

„ * ■ " • ' * "

P A R T

System Design

This page intentionally left blank

System Design

We've understood the users model of work, weVe captured it in
work models, we've envisioned new ways for people to work—

but so what? How does this help us with software design? Way back in
Chapter 1, we discussed the idea of a system work modeU the approach
to doing work that's built into every system. The vision of Chapter 13
defines a new way of working, with many delivery mechanisms. IT
shops can define new roles and procedures in concert with the busi-
ness partner; commercial product developers can define services and
training. But in this book we're focused on software and hardware sys-
tems, which embody the desired system work model. How do you
make the transition from the vision and storyboards to a system
design that delivers on their promise? In Contextual Design, we intro-
duce a new modeling technique to reveal the system work model and
show how all the parts of the system relate to each other in the user's
experience.

K E E P I N G T H E U S E R ' S W O R K

C O H E R E N T

The challenge is to keep the system work model coherenty so that it
supports the users and fits with their expectations while extending and
transforming their work practice as prescribed by
the vision. Coherence isn't just about consistency of
the user interface—a coherent system keeps the
user's work orderly and natural. When a presenta-
tion tool won't let its users change slide notes and
slide contents at the same time, making them jump

Design challenge: to keep
work coherent by keeping
the system coherent

296 Chapter 14 System Design

Users have to be the glue

between incoherent

systems

In the face of work

complexity, designers

create simple solutions

back and forth between views, it breaks up the work. When a word
processor provides three successive cascading dialog boxes to choose a
bullet, it turns a minor function into a whole task, complicating the
work. When an email system lets users search the address book by
providing a simple text entry field that filters the address book names
but uses a separate query window to search the "sent mail" folder (Fig-
ure 14.1), it provides inconsistent structures for doing similar work.
When the system work model is coherent, it keeps the user's work
coherent; when it fragments, it's the user's work that is disrupted.

Keeping the system model coherent is hard enough when it's one
user doing a single task. It's even worse in real systems, which support

multiple people playing multiple roles, across de-
partments or the whole business, while using several
systems. One user we talked to was verifying informa-
tion given to her by another department. The in-
formation on the form was accessed by several differ-
ent applications. By the time she was done, she had

used 11 screens in four applications to check a single form. Another user
wanted to see what drugs a person was taking while recording a clinical

event. His information was online, but he had to leave
the application he was using and get into an entirely
separate one to get at drug records. In both cases, the
users had multiple systems, each designed to solve a
single problem. These systems didn't address the user's
whole job and didn't attempt to make the work fit

together across the different departments or tools. When work practice is
too large and complex to see, or it's too hard to address all at once, it's
easier to write simple systems that address single problems. But then the
systems chop up the work and leave it up to the user to put it back
together by taking extra steps or doing additional work on the side.

From the developer's side, the picture is no easier. Software develop-
ment organizations start projects to address specific problems, and only
later do they realize that the systems don't hang together and don't build
up into a coherent solution. This leads to conflicts down the road:

You've put a personal organizer in your product? But we're
chartered to build the company's solution for personal orga-
nizers! And why does the operating system have a to-do list?

We started 10 years ago with a basic system. But we've
added on so much that now we have over 50 applications and

Keeping the user's work coherent 297

In Box Out Box Filing Cabinet Address Book

Q»> Add Folder |0f Empty Folder C \ |Find & Move FileCs)... 0 Delete Filets)

Folder Name

Û Read Mail

Û Sent Mail

Q Deleted Ma

Q ASD

Q CC Clerical]

□ CC Fodder

CD CC Subscri|

Q CC Subscrii

CD CC Unreachable addresses

f i nnntFatii^l fiiinnpiitinn

File Name From/To

Filing Cabinet Search

Cancel

Find:

(ß Search selected folder

Î Search all folders

| Search subject only

Î r .nntpvti ial r inniw: t inp V9

^k and Kar 9 /24/96 5:22 PM

lal-connect 9 /24/96 1 ;54 PM

9/24/96 1 :44 PM

lie and Kar 9 /24/96 1:41 PM

Ifnc 9 /24 /96 1 ;35 PM

[llinandKa 9/24/96 1 ;33 PM

IsenandKa 9/24/96 1 :29 PM

lal-connect 9 /24/96 12;42P

^ n n + f l v t . ^ l - ^ r . n ^ - r q / ? n / q f . 1 1 X p d

616 in l is t , 1 selected

ÖL Browser ■ S "

In Box M± Out Box Filing Cabinet Address Book

Jl M« | 4 s Add 1 ISr Fiî HU Delete

^TÏH Written j Subject

1 0 7 / ^ 7 2 2-. F
© 7/22/97 2 25 F
© 7/22/97 2 ^
© 7/22/97 2 - F
© 7/22/?72 4ÜF
© 7/22/97 2 41 F
0 7/22/97 2 41 F

©
0 7/22/9 7 2 42 F
0 7/22/972 4: F

PE Mprûrrnnq rue** mg

Lûr i- id^r- j t ion of t h * n ^ t ^ r

F V9::: b u d ^ t pr"■:- Ĵ - ' +li>n-"-

* . arnin-ahori of the kub ier t

re -j.jlf

Thi-_.ij.jt.t-i-

Hi* n- *. r.-.-- + in.;

■^Keroe

Huf.^i for- * h - Ti.tijre

cori.-id^nriq i h - .-■..:.ijr-̂ .̂

© 7 / 2 2 / 9 7 2 44 F' p r o q r ^

86 in list , 1 selected | 0 | -i'i|

To

. l*hn Ol iver

Torn Jone-

F In-.n-v

L onmo f 1_>:

John ü l ; v w

l_ri'iUhi"i' a or >: om

.■Mddlr'^rtLy.-i^ .-r .j

' / j ro '_ne„.^

= r i^l t>i i ' ;hi-. r.-rr,

■J.iirir Mir.- h

U r a l Sharp*

j Account
ITIlVrTP?T'T.T!T

Internet i/or

in tern** f..;,r

l r i t * r r ,M Cor

In tern** Cor

Internet Lor

Ir.t^r-not Co-

Internet Cor

Iri+.-'ETi.'t Cor

I n U r n - t r ,:,r

I n t e r n e i.or

Interne* Lor

TI^I'.

Ytr*:

i>-.;

n.*.:

n- i .

n-'.-

rit-■.

Ti^i.

n»-:

1*

Â

Ml

f51

p>
a

F I G U R E 14.1 Claris Emailer: Two ways of finding: one with a query dialog box-
one with a filter.

no clear idea how they fit together. I'm not even sure we know
where all the duplications are.

We do charting. We don't do data reduction—that's the
database's job. I know you can't currently do the data reduc-
tion you need to do to use our charts, but that's the database's
problem.

298 Chapter 14 System Design

How can an organization figure out where the boundaries
between applications should be, so that every work task is addressed
once and once only and no part of the work falls through the cracks?
In the end, the system work model that matters is the one supported
by all the applications together—how can an organization see it,
design it, and deliver it?

BREAKING U P TH E PROBLEM BREAKS U P
T H E W O R K

One solution to handling the complexity of work is to choose to
address only a small part of the problem. As we've seen, that tends to
break up the work for the customer. Addressing the whole of the work
coherently means building a bigger system or tying together multiple
small systems seamlessly (an even harder problem). As the size of the
system or systems goes up, keeping the systems themselves and the
work practice they support coherent gets harder and harder. A small
system can be designed and built by one person—keeping it coherent
isn't so difficult. But it takes multiple people working in parallel just
to get all the details of a larger system worked out.

A common solution is to anoint an "architect" or architect team
with the responsibility of tracking the whole system and catching any

discrepancies. The work itself is done by carving the

No one person can keep

all parts of a complex

system in her head

system up into pieces, assigning pieces to individu-
als, and letting them work out the details. But as we
discussed when introducing work models in Chap-
ter 5, as soon as any system grows beyond the very
simple, it's just too hard to balance all the factors

without some external representation to manipulate. Furthermore, in
a large system, too many different people and groups are building too
many parts—it's too hard to keep track of all the relationships. As
soon as several people get involved in the design, they need an exter-
nal representation to focus their discussion and capture their agree-
ments. It's no longer enough for the whole design to stay in one per-
son's head.

Passing out pieces for people to develop independently throws the
whole design out of balance unless everyone really knows the whole
design and how their part fits. Give one person a single part to design
and build, and what should be a minor feature can turn into a whole

Keeping the user's work coherent 299

Developing a piece in
isolation leads to
overdevelopment

miniapplication (Figure 14.2). Designers find it hard
not to treat their assigned part of the system as the
most important—not only is their ego involved, but
it is the most important part for them. It's no wonder
so many small features turn into a larger and more
complicated design than necessary.

It s no wonder that designers create a dialog box that is almost like
the one their neighbor designed, but with the one or two extra features
they can't do without. It's no wonder that what started as a simple dia-
log starts to feel like a small application. Dividing the system up
among team members tends to pull the design apart—it's up to the
design process to provide mechanisms that keep it whole.

A S Y S T E M H A S I T S O W N C O H E R E N C E

While storyboards capture a coherent story of a single task, each sto-
ryboard can only follow that one thread. A full system supports many
different tasks and roles. Storyboards work out system implications
sequentially, by considering what happens in order to perform a task.
But the system needs to hang together with its own organization and
structure. That organization and structure has to be designed as a
whole if the system is to be coherent.

It s as if the stories of use are paths across a university quad, each
one wearing out the grass a little along that path. Then the grounds-
keepers look at the paths all together and decide that
here, where two paths run almost together, they can
be merged and paved; and there, where four cross,
there might be a little courtyard with benches. The
people making the paths are following their every-
day life activities without thinking particularly
about where they walk but following the best path for them; the
groundskeepers are withdrawing from day-to-day events to see the
implications on the whole "system."1 And once the groundskeepers put
new physical structures in place, people discover new possibilities and
build on them—perhaps the courtyard becomes a favorite spot for

This is the same alternation between withdrawal to see the structure of what s going
on and return to the ongoing work that we first encountered in discussing partner-
ship, in Chapter 3.

Good design for

individual work tasks is

not enough

300 Chapter 14 System Design

P r i n t e r : LaserLUri ter Se ie t t 360 ^ | Oes

[; Genera l ^ ▼ 1

Copies: \~\

Pages: * RIJ

" ■ M o m : ! To;.

. . .
Paper Source: ■■ fill pages f r o m : Hulo Seit

'.■ Fus t paqe f r o m :

| Sane Se t t i ngs |

l i n a h o n : [

<l

Cancel

^771
Pr in te r w]

|

zi 1

[f~ P r m t "] j

Pr in te r : LaserWr i te r Seiet

j ■ Backg round P t i d l i n g

^
Pun t m:

P t i n l Time:

Saue Set t ings

'_■ Fo regro

• D i i r k g m

Urgent

■ Norma l

Pun t at

. Put Doer

t 560 ▼ J De*

und ino spool Tiler

und

i m e n t on Hold

t i n a t i o n ;

Cancel

Pr

c

~ 1
inteT -v |

P n n l 1

f

P u n t e r : Lase rWr i t e r Seiet 1 sbO w\

f u l ü (M a t c h i n g -w \

Print Color: Co lo i . Oiagsc ale

Sni 'e Se t t i ngs !

Des t i na t i on : [Pun ie r **) |

■ ' - 1

T a n T e P | Pr in t j | {

Pr in te r ; Lase rWr i t e r Select 160 D e s t i n a t i o n : ! Pi ' " ' - - I
M i t r o s o f t l l iorrJ

Document | ^ | [H II Pages >n R a n g e f ^ | UJorct Opt ions

[^ f n l l f l t P f o p i e s

| Rdnge<>> ! Word Help

Shnn« a sepa ra te P n n l d ia log t o r :

E I d i h Or i en ta t i on in t he Document

Sane Set t ings | Cancel ' I Pr int ij

P n n t e i : j Loser m i l l er Sei eel Ï 6 0 ^]

' " F T

Sa

ro i Handl ing 7]

I f I h e r e is a P o s l S m p t "' e r r o i :

• NO sper la l r e p o i t i ng

S u m m a r i z e on sc reen

P n n l d e t a i l e d r e p n H

I t the c a s s e t t e is out oï paper :

Suu lch to ano the r l a s s e l t e n

V Display a le r t

ie Se t t i ngs

n th

D e s t i n a t i o n : L PT

same poper si<?e

] I an eel I

^~H
^iuü

i

Print j 1

P r i n t e r :] L aser lHr i ter Select 560 ▼ |

| Couer Page ▼ |

*
Print Toiipr Page: • None

■ B e f o r e Document

'.!.■ l i f t e r Documen l

[~Sä i -7s7 tTrn^s " j

D e s t i n a t i o n :

f an<pl

___̂
Printer » |

I ["print]

Prrn le r :

^

i "

777~1
LaserWr i te r Select 56Ü T] Des t i na t i on : P n n l e i ▼ !

Layout

1

Sat>e Se l l i ngs

zJ
Pages per s h e e l ; [_J ^ J

Bo r t l e i : | l im i t ' -r |

T a n r e U (Pr in t j

1 _ _ ^ _ ^ ~ ^ ^ _
Pr in te r : [LasecWnle r Se le t t 560 - ^
: S a u e a s f i l e v |

* F o i m a t : | PostScr ipt Job

PostScr ip t l e u r l ; • M e n r - I 1 Compat ib le

'"'■ Leuel ? Onlg

Data F o r m a l : •: flsrtl

: B inorM

Min i inc lus ion : None

, Sane Set t ings

Des t i n a l m n

^ J

- I

f a m e

: | P l | n t e r

J t P,,n

7771
JÜ

i 1 1

F I G U R E 1 4 . 2 Apple's LaserWriter 8.4.1 print dialog—what happens when
printing becomes an application. How many different dialogs are really needed to
print a file?

Keeping the user's work coherent 301

street musicians. When structure is well designed, it's flexible enough
to support additional uses, unforeseen by the designers.

In the same way, designing a system based solely on storyboards—
or use cases—would optimize each sequence of use at the expense of
the system as a whole. Tell the story of nine different users, each with
different printing needs, and each dialog in Figure 14.2 might make
sense on its own. It's only when they are seen together that it's clear
the interface is overcomplicated. Walk two separate cases for filtering
address books and filtering sent mail, and each interface in Figure
14.1 makes sense. It's only when put together in the context of a sys-
tem that they become inconsistent.

Good design tends to alternate between sequential and structural
thinking. The initial quad design was a structure, designed as a consis-
tent whole and put in place to be used by many peo-
ple many ways. The actual use by any person is
sequential: they came in here, crossed to there, sat on
the grass after that, and left over there. Each individ-
ual sequence of use hangs together for that person.
The next step of design switches back to structure.
The groundskeepers looked at all the patterns of use
together (as recorded by worn grass) and redesigned the structure to
better fit its use. This step of seeing all the parts of a system as they
relate to each other is an intrinsic part of systems design. Seeing and
balancing the parts of a system against each other goes beyond a pure
task-oriented approach by introducing a focus on the structure of the
system itself.

Good design process
alternates between
sequential cases and
structural models

T H E S T R U C T U R E O F A S Y S T E M

A courtyard's easy enough to see and design. How can the design
process make it equally easy to see the structure of a complex system?
What is the structure of a system that designers need to see and
manipulate, and how does it relate to the structure of work?

Consider a user reading mail: First she scans her new messages
looking for something important. She doesn't care
to see the whole content of every message—that
would be a distraction. She just wants to know who
it's from and the subject line to decide what to read
first. Then she decides on one to read, and suddenly

The structure of a system

determines how well it

supports work

302 Chapter 14 System Design

Systems provide places
where related tasks
are done

Any design change
potentially affects the
whole system work model

she needs a new context for doing this new activity She no longer
needs to see all her messages, but she does need to see the whole con-
tent of this one. Her intent changes—she s not wondering what im-
portant messages she might have been sent anymore, she's reading to
find out what this one message says. Accordingly, her tools change—
instead of seeing and scrolling over message headers, she's reading
through message content.

Our user situated herself in a place in the product that suited the
needs of the activity she was engaged in and stayed there a while,

scanning messages with the tools provided. Then,
when her activity and needs changed, she moved to
a different part of the product where she could do
the different kind of work associated with the new
activity. The structure of the system consists of the
places in the product where she can work, the func-

tions that support work in each place, and the links that allow her to
move from one place to another. The places do not impose any one
sequence of use. Like the areas within a quad, they all exist together,
offering the possibility of any number of different uses. But the struc-
ture they offer may make work convenient and easy to do or make it
difficult. Customer-centered design seeks to build a structure into the
system that supports the users natural movement through her work
and is flexible enough to enable the invention of new ways of work-
ing. Seeing this structure and reworking it to fît the user better is
equivalent to the gardener restructuring a quad to better fit its usage.
That's what designing the system work model is all about.

Designing the system work model as a whole runs counter to the
engineering principle that every part should be self-contained so that

changes to any part are isolated to that part. That's
one reason for thinking of the implementation in
terms of opaque modules or objects. But some
approaches to design that work well for engineering
the implementation get in the way when designing
the system work model. Suppose Joe invents a way

for users to scan and search without entering a query and uses it in the
piece he was assigned. There's no way to keep users from expecting this
approach throughout the system because the parts aren't isolated in
the users' experience. Having encountered the mechanism in one part,
users expect to find it in every similar situation. So keeping the design

Keeping the user s work coherent 303

coherent means that after a part changes, the designers must step
back, look across the whole system, and see what impact that change
has on the rest of the system. The system work model is a single
whole—every part exists in relationship to every other part, and a
change to one may ripple throughout the system.

D E S I G N I N G S T R U C T U R E P R E C E D E S

U I D E S I G N

Designing the system work model to fit the user is a problem of struc-
turing the system well, not of designing the user interface or imple-
mentation. User interface and implementation are the next layers of
detail in the design process. When the makers of PowerPoint decided
to make one view, and only one, that edits the contents and layout of
a slide, they made a decision about the structure of their product. By
implication, they made an assumption about the structure of users'
work—that it is reasonable to concentrate all slide changes in this one
view. In the same way, when they decided not to give control over fly-
ing bullets for on-screen presentations from this view, they decided
that was a function that did not need to be part of this work. These
are structural decisions—they decide what the system should do and
how it should be organized, but say nothing about how it should look
or be implemented (Constantine 1994a).

Structural decisions of this sort precede decisions about the user
interface. It doesn't make sense to design screen layouts until youVe
decided what function the screen should implement.
It would be as though an architect started design by
choosing rugs and materials for the countertops.
They don't; they start with rough sketches that they
work up into a floor plan. The floor plan captures
the right level of detail for talking about the struc-
ture of a house—it shows the parts and their relationships without
showing how the house is decorated. The user interface of a system is
equivalent to the decoration of a house. It matters, but if the structure
is wrong, no user interface can fix the problems.

In our initial design teams, we found that team members tended
to slide into conversations about the UI before they were ready—
before they had agreed on base structure. They were like architects
who could only communicate by drawing pictures of the proposed

Use a language of
structure to maintain a
focus on structure

304 Chapter 14 System Design

Living in a house
is parallel to working
in software

A floor plan supports the
structure of life in
the house

house. "We want this function in this window," one would say,
sketching a row of buttons. "The style guide says those should go on a
pull-down menu," another would reply. "Do you really want to use
that word?" a third would ask. When the very language suggests that
the user interface is the topic of conversation, it s hard not to be dis-
tracted by it. But how could we represent the system work model
directly, free of any UI implications?

The pattern of working we found in software—working in a place,
moving to a new location, and doing a new kind of work in that

place—is not unique to working in a system. In fact,
it's very like living in a house (Winograd 1996). To
start dinner, a person goes to the kitchen, where the
tools for cooking are located (knives, bowls, stove). A
drawer sticks, and he decides to take it to the work-
shop and plane it down while the water boils. He

moves with the drawer to another place, which has the different set of
tools useful for minor carpentry, and works on the drawer there. Then
he goes back to finish dinner. A house consists of places to do things,
functions or tools that help do things, and access allowing people to
move between places. The parallels between living and working in soft-
ware and in houses suggest that studying the role of a floor plan might
shed light on the appropriate representation of a system work model.

A floor plan occupies a unique role in the design of a house (Figure
14.3). It's less physical than an elevation, which shows a view of the

house as though you were looking at it (an elevation
is more like a UI picture). It doesn't show wall color
or how the house is finished (which would also be
more like a UI). Yet it's not at the nuts-and-bolts
level of a construction diagram, which might show
how to put a wall together but doesn't show anything

the homeowner can relate to. The floor plan selects a few of the most
salient aspects of a house as it supports living and represents them: the
spaces in the house, their sizes and relationships to each other, the
things in each space that support the kind of living done there (stoves,
refrigerators), and the access between spaces.

As a diagram, a floor plan supports a conversation about how well a
design supports a particular style of life, and allows the architect to com-
pare that with the life the house's prospective owners want to have. Archi-
tects can walk stories of living through the floor plan to see how well it fits

Keeping the user's work coherent 305

0
1 — 5'0" — \- 4'0"—I —4'0" - I -4'0"- J 4'0". T -5'0"- T -5'0"- H

©-

F I G U R E 1 4 . 3 A floor plan. Notice how the important distinctions are immedi-
ately apparent—the relative size of the spaces and the access between them. Details
that are unimportant for understanding the structure of the house—rugs, wall sur-
faces—are absent or inconspicuous. (Even the tile around the woodstove affects
access because people will walk around it.) But the drawing does tie to the users'
experience of moving through a house. It also puts construction details in context—
the dark squares in the walls indicate supporting posts, and the numbers in circles
key this diagram to cross sections showing wall construction. This is what we are
missing in software design—a single representation that shows how all the parts of
the system relate in the users' experience and how they relate to the implementation.

the homeowners. Is a room too small for the way the owners want to use
it? Is it too hard to get from one room to another? Is there a lot of dead
space devoted to halls or intermediate areas? The floor plan lays out all the
parts of a house, letting the architect walk different cases and scenarios
through it. Rules of thumb, such as constraints on minimum clearances,
layouts that work well, and the limitations of construction materials,

306 Chapter 14 System Design

A UED supports the

structure of work

in the system

ensure that the resulting design is usable and implementable. Of course,
once the house is built, meals may be eaten in the kitchen, and the dining
room may become a music room. A good structure will permit different
uses, which the architect never designed explicitly

THE U S E R ENVIRONMENT DESIGN

Contextual Design represents the system work model in a new model-
ing technique, the User Environment Design (UED). The User Environ-

ment Design plays the same role in Contextual
Design that the floor plan plays in house design. Just
as a floor plan represents the key distinctions for sup-
porting living, the User Environment Design repre-
sents the key distinctions for supporting work prac-
tice with software systems. Like the floor plan, the

representation shows all the parts of a system that the user knows or
cares about, what aspects of work each part supports, and how the parts
of the system relate to each other (see Figure 14.4 for an example). Like
the floor plan, it ignores UI details to reveal the underlying structure,
uncluttered by surface appearance or by implementation details. In fact,
the User Environment Design has no representation for these details, so
it's hard for a conversation focused on a User Environment Design to go
into details too soon. (In this way, it fills the need for a blueprint for
software design identified by Denning and Dargan [1996].)

The User Environment formalism highlights the key concepts for
designing a system work model. Focus areas show the coherent places in
the system that support doing an activity in the work. They're the
"rooms" of the system. Like rooms in the real world, they should support
the activities that happen in them well. They should provide the func-
tion that's needed to do that work, and only the function that's needed.
They should contain, organize, and present the objects that users need to
work on. And like rooms in the real world, they are connected—the
arrows between focus areas show how the user can move from place to
place as their work requires it. Like paths traversing a quad, a new User
Environment Design is built from storyboards, collecting the different
stories of use into one structure supporting them all. User Environment
Designs can also be built to represent existing systems, revealing their
structure and highlighting problems (Figure 14.5).

The User Environment Design 307

2. Choose principal

View all principals and their
status

Functions
• Select principal

Overview
• Show delivery status by

principal
• Show new group members
• Manage group

Links
> Coordinate principal

Objects
Message
Principal:
Group
Person

6. Send message

Ensure message gets
delivered even if system
is down

Links
> Deliver

Objects
Message
Person
Group

1. Handle mail

Manage mail messages for
self or for principal

Functions
o Alert to new mail
• Print
o Show delivery status
o Show my groups
• Redirect mail to coordinator

Links
> Read message
> Create/reply to message
> Forward message
> Coordinate others' mail
> Manage address book

Objects
Message
Group

4. Compose message

Create a new message

Functions
• Edit content
• Address mail
• Add to cc list

Links
> Send as principal
> Send as coordinator

(when handling someone
else's mail)

> Add addressee to address
book

Objects
Message
Person
Group
Content

5. Manage address book

Keep list of frequently
accessed people

Functions
o See addresses
• Add address

Links
> Send mail to person

Objects
Message
Person
Group

3. Read message

See the content of one
message

Functions
o View content
• Annotate
• Read next message

Links
> Reply
> Forward
> Forward as coordinator

(when handling some-
one else's mail)

> Add sender to address
book

Objects
Sender
Subject
Message text

F I G U R E 1 4 . 4 A User Environment Design for a part of a mail system. Each box

represents a "focus area," a place in the system. These are like rooms in a house,

which permit the user to focus on one particular activity. The purpose statement

describes the work the focus area supports. Functions, which enable the user to do

work, are listed in the focus area, as are the work objects that the user works on

there. The arrows between focus areas are links and show how the user can move

through the system.

This form of User Environment diagram is on its way to becoming a specifica-

tion for the system. Each focus area collects and describes the functions provided the

user in that focus area. The focus areas act like checklists, allowing designers to

review the function in each place and verify that all the function is needed there and

that all needed function is available.

15. Edit location
Choose how to access different
services from this location

16. Edit service connection
Define all possible ways to connect
to this service

9. Define schedules
Define when mail is
automatically collected
from servers

10. Set location
Define current
location of mobile]
system

11. Define services
Define mail-handling
services to collect
masl from

12. Define
destinations
Define shorthand
names for common
mail destinations

*

1. Manage new messages
View and manipulate all
messages that have not
been filed

2. Manage outgoing messages
View outgoing messages that
have been created but not
yet sent

6. Read message
Read sender information
and message content

13. Set up mail
actions
Define standard
ways to identify
and handle certain
types of mail

14. Define
preferences
Define
preferences for
handling mail

3. Manage message folders
View, create, and delete folders
for filed messages

4. Manage address book
View, select, add, and delete
people's names and email
addresses

5. Manage filed messages
View and delete messages in
the current folder

18. Define message query
Specify the messages to see as
the result of a query

7. Create message j
Create message, including
content and address information

19. View of query results
See list of messages that match
a query and their contents

17. Create new
address group
Define a group
of addresses

8. Create new address
Create a new address
book entry

20. Find address
Specify an address filter and
see and choose from matches |

p
^ ^

^

^

b

F I G U R E 1 4 . 5 A full User Environment model of Claris Email-
er UI. This more graphie form of User Environment diagram reveals
the overall structure of a system, rather than the exact function in
each place. Here, the core focus areas of Emailer are shaded for
emphasis; in the product, each is a tab within the main window. The
User Environment model immediately reveals that focus area 3,
"Manage message folders," has a different user interaction style from
the others—it 's split into two interacting focus areas, 3 and 5.
Beyond this core, the model shows two distinct parts of the product.
One set (above) manages setup and preferences. Scanning the model
reveals that setting one s location, a common function for those who
travel, is treated as part of setup rather than an ordinary part of the
core product. This contrasts with CompuServes Information Man-
ager interface, which more conveniently allows location to be viewed
and changed right from the status window.

The second set of focus areas (below the core) support the actu-
al work of creating and sending messages. Here, the model shows in

18 and 19 that users can only query on filed messages; that the
results of a query appear in a special interface that shows both results
and message content (not 6, the normal window for reading mes-
sages); and that though users can create a message from this results
window, they cannot add the sender to their address book (8) as
they could from the normal "Read message" interface. The model
shows that the "Query/View results" pair (18 and 19) for messages
provides a different structure for queries than the single "Find
address" focus area (20) for searching the address book.

These are all structural issues, not user interface issues. They
have to do with what the product does and how it is organized to do
it. Whether this is a good organization or not depends on the actual
structure of work in reading and handling mail—but the User Envi-
ronment Design provides physical support for the conversation.

310 Chapter 14 System Design

Because focus areas are the most visible concept captured by a
User Environment model, the model helps designers organize the sys-

tem so it fits the work. Do users spend time scan-

A focus area is a place

where users focus on one

kind of work task

The UED reveals

structure

ning their mail messages, choosing which ones to
look at? Then it makes sense to create a distinct part
of the system that helps them do that. After choos-
ing a message, do they then concentrate just on that
message and what it's about? Then seeing other mes-

sages is a distraction, so it makes sense to provide a separate area to
focus on a single message. What's involved in reading a message? If

users often want the sender in their address book,
adding the name to the address book should be a
function available in that place. If users never
scanned messages, but simply worked through them
one by one, there would be no need for a separate

place to see all messages. If they needed to see what messages preceded
and followed the message they were reading, the place to read should
be integrated with the place to scan messages. (In a bulletin board,
where messages are captured in threads of connected conversations,
readers do want to see the context of messages, and products often do
connect the two places.) The structure of the system must be designed
to fit the structure of the work, and the User Environment model
makes the system structure explicit.

R E P R E S E N T I N G T H E S Y S T E M WORK

M O D E L

Capturing and representing the system work model in a User Envi-
ronment diagram gives designers a way to see the whole system and
keeps design at the right level.2 A user interface would be too
detailed—it invites the team to get caught up in issues of layout and
appearance that can be put off until later, after the base structure is in
place. Data flow diagrams show movement and transformation of data
intrinsic to the work, not the structure of the system that the user
experiences. Structure charts show the components of the system at a
higher level of detail than code, but are focused on the structure of the
implementation, which is not experienced by the user directly. The

2 For a more detailed discussion of reflection in the design process, see Schon (1983).

The User Environment Design 311

same is true for object models: an object hierarchy provides a way to
see and structure the implementation, not the user s experience.

Of course, people claim object models can represent anything,
and it's true that an object model can represent the parts of a system
design. But to be a good design and thinking tool, a
model should evoke the thing being designed, mak-
ing the right issues explicit and concrete. Designers
manipulating the model need to feel like they are
manipulating the real thing. An object model could
capture the data in an architect s floor plan—but no architects using
such a model would ever feel like they were manipulating space, as
they do when they manipulate a floor plan. If the model is too far
from the actual design issues, people using it have to make a transla-
tion in their heads. So it's not good enough to be able to make a map-
ping from a modeling technique to the issues for the system work
model—a new model is needed to represent the users experience. An
effective model will influence designers' thinking by making the rele-
vant issues jump out, just as work models influence what interviewers
see in the workplace.

Such a model won't supplant object-oriented design, of course. In
an object-oriented design, the object model keeps the implementation
consistent—in the object model, developers bring functions from dif-
ferent use cases together into a single object class. They identify the
reusable parts that different system components can use. But that's at
the implementation level—the object model represents the different
parts of the code, invisible to the user. The structure of the system as
the user experiences it needs to be kept coherent as well.

THE U S E R ENVIRONMENT FORMALISM
IN THE DESIGN PROCESS

The User Environment Design occupies a place in the design process
between storyboards on the one hand, and user interface design and
object analysis on the other. It makes the discussion
of the system work model tangible by providing a
physical representation. In this way it helps to sepa-
rate the conversation about the system work model
from the redesigned work process (represented in sto-
ryboards), from the system appearance (represented

A good model evokes the

reality it represents

Explicit models help keep

design conversations

separate

312 Chapter 14 System Design

T A S K - O R I E N T E D OR O B J E C T - O R I E N T E D ?

Is designing with storyboards and User Environment Design task-oriented or object-
oriented? On the one hand, its clearly not object-oriented because the User Environment
Design does not focus on identifying common objects as its primary feature. Its most salient
concepts are coherent activities—the focus areas—and flow between them. Yet its clearly not
task-oriented either. A User Environment Design prescribes no order, as sroryboards do. It
shows the parts of the system and their relationships independent of time. Many different sto-
ries of use can be walked through a User Environment Design to see how well it supports them
just as many different stories of individual actions can take place in a house-

In fact, even in pure object-oriented design from use cases, object modeling does not stand
on its own. The purpose of a use case is to tell a coherent story of how the users will work and
the system will meet their needs (Jacobson et aL 1992), From this, object modelers can extract
the objects and their behaviors. But neither use case nor object model provide a good represen-
tation of the system work model. The use case is task-oriented, telling one story of use, for one
task, but it doesn't provide a coherent view of the system. The object model gives a coherent
view of the system, but not the system the user experiences. Instead, it's a view of the system the
developers will implement. Its not customer-centered because it*s not focused on keeping the
users work coherent—and rightfully so, since its an implementation tool. It is supposed to keep
the implementation coherent—elegant, evolvable, extensible, and maintainable.

This is true even of so-called object-oriented user interfaces. These reveal to the user only
a small proportion of the objects and behaviors of a full object model for the system. Object-
oriented user interfaces achieve consistency by presenting objects as identifiable screen artifacts
with consistent behavior. But what objects should the system present? How should they be
organized? And what behaviors should they have? These are the questions answered by the sys-
tem work model.

The basic question is, How do designers decide what the objects and behaviors should be to
support the user? Thats the question answered by the User Environment Design. Rather than
base object definitions on use cases, the User Environment Design introduces a coherent model
of the system that can be designed, structured, and corrected before object definition starts. In
the end, its neither task-oriented nor object-oriented. By focusing on the structure of work in
the system, its work-oriented and thats what makes it powerful. (Rosson and Carroll [1995]
suggest another approach to integrating object-oriented and task-oriented system views.) Ĵ

by the user interface), and from the internal system structure (repre-
sented by the object model). When each conversation has its own
physical representation, the design discussion is easier to have. Is the
team arguing about how to change the user's work? Then they re stand-
ing in front of a storyboard, changing it to reflect their thinking. Are
they arguing about how to organize the system to support that work?
Then they are modifying the User Environment Design. Are they

The User Environment Design 313

arguing about appearance and layout? Then they're changing parts of
the user interface. Everyone can tell which issues to pay attention to
because that's the model the team is updating.

User Environment Designs support the natural alternation be-
tween sequential and structural thinking. Storyboards and use cases are
sequential; they tell a single series of events in order.
The vision, User Environment Design, and object
model are structural; they show all parts of the sys-
tem and how they interrelate, though they focus on
new work practice, the system work model, and
internal structure, respectively. Each sequential step
follows a story of use to work out the details of the
preceding structure and uncover problems with it, so storyboards help
the team work out the details of a vision, and use cases help work out
the details of a User Environment Design. Each structural step pulls
together the implications of different stories into a coherent system.
The designers step back to see how each sequence affects the structure
as a whole. So the User Environment Design integrates one system out
of multiple storyboards, and the object model integrates one model
out of multiple use cases. When a single structure is created, it can be
checked for accuracy and completeness—the functions of a User Envi-
ronment Design and behavior of an object can be reviewed and any-
thing missing added. This continuous process of working out details,
integrating, and checking ensures the integrity of the resulting system.
Each transformation acts like a structured walkthrough, forcing the
team to review all parts of the system from a different perspective (Fig-
ure 14.6).

The User Environment Design is created first to support design.
It enables the design team to keep the system coherent. But because it
represents the structure of the system as the user
experiences it, it supports customer-centered project
planning. Grouping focus areas that address specific
roles identifies subsets of the whole design that sup-
port a coherent part of the work and could be delivered together.
Identifying focus areas that are closely associated with each other
reveals a subset that is appropriate for assignment to an implementa-
tion team. Building up a User Environment Design to include exter-
nal and third-party products creates a strategic design showing what
corporate partnerships to create. Building a reverse User Environment

Alternating between
sequential and structural
thinking drives design
details

The UED aids planning

Chapter 14 System Design

Work out details

Consolidate structure

Work out details^

Consolidate structure'

Structure

Check and fix

Sequence

Reveal implications

Structure

Check and fix

Sequence

Reveal implications

Structure

F I G U R E 1 4 . 6 The progression from design to development. This diagram
shows the process of going from work models through systems design to implemen-
tation design. It shows the alternation between sequential, story-based thinking and
structural, model-based thinking intrinsic to design. The stories build a structure
that can be checked for coherence and completeness; the structure drives lower-level
stories specifying more detail. Working out the stories reveals holes in the structure
defined previously, and putting together the structure reveals inconsistencies in the
stories. The stories show a particular instance of using the system; the structure
shows how the system can support multiple stories. Contextual Design alternates
between the two, providing physical representations all along the way.

model of existing systems identifies duplicated function and holes in

the suite. By representing the parts of the system from the point of

view of the user's work, engineers can see how their work relates to

each other and to the user. And that keeps the whole development

process coherent.

One of the challenges of any design process is to keep the design

coherent—to maintain the design team's ability to comprehend and

operate at the level of the whole system while working on a part. Con-

textual Design continually returns to a coherent representation that

pulls all the detail together. The consolidated work models show the

whole customer work, structured and represented along each of the five

dimensions. The User Environment model shows the whole system as

The User Environment Design 315

experienced by the user, with all the parts and their relationships, inde-
pendent of UI or implementation. The object model shows the whole
implementation architecture and how it is orga-
nized. Each of these representations is focused on
the appropriate issues for its place in the design
process, but each represents the whole system coher-
ently. The User Environment Design responds to
the work models on one side and drives the object
model, the user interface, and project planning on the other. It's the
pivot between customer work and system implementation, making
sure that the work as it happens in the system hangs together.

The UED keeps the work

coherent by keeping the

system coherent

This page intentionally left blank

The User
Environment Design

The goal of the User Environment Design is to present structural is-
sues, making the key considerations salient for keeping the user's

work coherent. IT keeps the design team focused on the customer by
giving a physical representation to the structure of work that the pro-
posed system will enable for its users. To be a good tool for accomplish-
ing this task, the User Environment formalism organizes the presenta-
tion of the system into a structure that supports a natural flow of work.

We saw in the previous chapter that work consists of coherent
activities. Each activity is oriented toward accomplishing some intent,
requires a certain set of actions to accomplish, and is naturally con-
nected to other activities that the user might choose to switch to,
given what they are trying to achieve. By their structure, systems cre-
ate places that can support an activity if they have the right organiza-
tion and make the right functions available. The system work model
fits the user when it matches the structure of activities and actions
that the user needs to accomplish.

Just as any house has a floor plan, no matter how it was designed,
any system has a User Environment model implicit within it. Any sys-
tem can be analyzed, and its underlying User Envi-
ronment model revealed. We introduced the User
Environment Design informally in the previous
chapter and showed some models taken from com-
mercial products. To introduce the parts of the User Environment for-
malism and their definitions, we'll walk through the analysis of another
commercial product, Microsoft PowerPoint. As we go, we will show
each part of the User Environment formalism and how they build up
to a complete model.

Every system has a UED

318 Chapter 15 The User Environment Design

„I* File edit Uieu.1 Insert Format Tools Draw Window lOirid P M H $J "*

l pillai [äf^ran^iRMR^iaiMUiÄlill^ (äl IZIIIZIBI^
[Kelvetu i a g a a EH HZK3ZHSO

Recruiting Presentation

The Consulting I ifc

• Travel to interesting places

• Work on the critical projects and the latest
technology in many companies

• Transform teams into working, effective units

• Invent new ways to make people and
organizations effective

• Be part of changing the way the industry
works

I5 l * l« ia l * l

Edit slide
Purpose: Create, view,
and change the content of
an individual slide

Functions
o View slide content
• Edit text
• Add shape to slide
• Add text box to slide
• Save slide show

Links
> Edit slide show
> Edit slide notes

Objects
Slide contents

b
* f l f \Ht* Slid*. [Layout ,. | TwyUte ,

F I G U R E 1 5 , 1 The main screen of Microsoft PowerPoint and the focus area that
represents it. This window creates a place in the system in which to focus on creat-
ing, viewing, and changing the content of individual slides. This place is represented
on the right, with the work that is done there summarized in the statement of pur-
pose. Functions are available through different mechanisms—toolbar buttons, pull-
down menus, the keyboard, and direct manipulation. In the focus area, we show
only the functions, with no indication of how they are accessed. As is usual in a
model built to analyze an existing product, the functions are high level ("add shape"
rather than listing all the different shapes), and the model lists only the primary
function in support of the purpose. A model built to design a new product would list
every function and every shape designers intend to implement.

Figure 15.1 shows the main window of PowerPoint, a tool for
making slide presentations. This window provides a place for creating
and editing the content of slides. In the User Environment Design we
represent places as focus areas, where you focus on doing a certain kind
of work. Every focus area has a purpose, a succinct statement of the
work the focus area supports. If you can't write a single sentence that
describes the purpose of the focus area because there are so many dif-
ferent functions doing different things, it's likely that the system is
poorly structured. Use the purpose statement to describe everything
the focus area does.

This window provides functions that enable doing work in the
place—to put rectangles, text boxes, and other slide objects on the

The User Environment Design 319

The UED focuses design
on coherent work
activities and the
functions they need

slide, color and rotate them, and manipulate them in other ways
Functions are made available through menus, toolbars, keyboard com
mands, and by direct manipulation. These are alter-
native UI mechanisms for performing a function;
some functions can be accessed all three ways (e.g.,
to save the presentation, choose "Save" under the
"File" menu, click the disk icon on the toolbar, or
type CTRL-s). Which mechanism the designers chose
to implement for a function matters—a poor UI or
inconvenient access to a function gets in the user's way—but it doesn't
change the purpose of the place or the work done there. The UI
mechanisms and screen layout are as much a distraction to under-
standing system structure as rug color would be on a floor plan. So we
list the functions once on the right, with no indication of how they
are accessed.

The "Edit slide" window also makes available the things the user
needs to work on to edit a slide—the slide itself and also text boxes,
shapes, lines, and clip art. These objects are collected and organized in
the place appropriate for the job at hand—in this case, laid out on the
screen to reveal the design of the slide. The focus area captures these
work objects as an important part of the definition of the focus area.
Later, when the object model is developed, they will be harvested as
starting points for the objects.

Some of the function in this window leads to other places. Select-
ing the small icon at the bottom changes to the slide sorter view. This
changes the view and the function available—it is
no longer possible to create and edit the content of
slides here. Instead, the slide sorter supports viewing
a whole presentation in order, changing the order of
slides, and controlling the transition from slide to
slide. Because the work that can be done is different,
the slide sorter supports a new activity in a new place, and we repre-
sent it with a new focus area. The function that switched from one to
the other is a link, shown on the User Environment Design as an
arrow (Figure 15.2). You'd expect to find links between focus areas
whenever the user might need to switch between the activities they
support.

This much of the User Environment formalism will represent
90% of most products. However, there are some additional cases, the

Links between focus areas
enable a shift in attention
to another activity

320 Chapter 15 The User Environment Design

: Edit slide notes
Purpose View and change
the notes associated with
a slide

Functions
o view content of slide
o view slide notes
• Change relative position

of slide view and notes
• Edit content of notes

Links
> Edit slide
> Edit slide show

Objects
Slide
Slide notes

Issues
• Can't edit slide content

from here

w
w

^ ^

Edit slide
Purpose: Create, view,
and change the content of
an individual slide

Functions
o View slide content
• Edit text
• Add shape to slide
• Add text box to slide
• Save slide show

Links
> Edit slide show
> Edit slide notes

Objects
Slide contents

w
w

4 ^

w
r

4
^

Edit slide show
Purpose: View a whole
presentation in order to
control the order of and
transitions between slides

Functions
o View content of slides
o View transition between

slides
• Change position of slides

in presentation
• Change transition between

slides

Links
> Edit slide
> Edit slide notes

Objects
Slide
Slide transitions

F I G U R E 1 5 . 2 Links between focus areas. These three focus areas support dis-
tinct but related activities. They declare that when a user is worrying about the
detailed content of one slide, she is not concerned with the overall structure of the
presentation. Conversely, if she is worrying about the overall presentation, she needs
to see and recognize slide content, but doesn't need to change it there; she's willing to
switch back to the "Edit slide" focus area and lose the context of the whole presenta-
tion. This works reasonably well, but on the other side users do need to change slide
notes and slide content together. When developing a slide, we have found that users
naturally develop notes and slide content in parallel, moving information from the
notes to the slide and back as the idea of what is presented shifts. The division of the
work in the current design does not support a fluid movement between notes and
slide content. The User Environment model above shows the connections and reveals
the issue.

A double link says to keep

one focus area in the

context of another

most important of which is the double link. When the user needs to
do the work of one focus area in the context of another, we show a

double link between the two focus areas. The spell
checker is clearly a separate focus area from the main
slide show—in this focus area, you think about
spelling and dictionaries, not about the overall lay-
out and content of your slide. But on the other

The User Environment Design 321

Edit slide
Create, view, and change

1 the content of an
individual slide

Functions
o view slide content
• (Edit text)
• Add shape to slide
• Add text box to slide
• Save slide show

Links
> Edit slide show
> Edit slide notes

Objects
Slide contents

Spell check
View spelling errors and
suggested fixes in content

Functions
o View misspelled word
o View slide at location of

misspelled word
o View suggestions for

fixing spelling
• Choose suggested word
• Change spelling
• Ignore word
• Add word to dictionary

Links
> Edit slide j

Objects
Word

F I G U R E 1 5 . 3 A double link between focus areas. The double link indicates that
the work done in the second focus area, spell checking, needs the context of the main
focus area and that the user will switch back and forth between the two. Designing
the user interface for this is a challenge because the user needs to switch between
focus areas without losing her context in either.

hand, its also closely linked to the "Edit slide" focus area: when you
move to the next spelling error, the main window switches to display
the slide with the error on it and attempts to position the slide so the
error is visible. So we represent the spell checker as a double link to
the "Edit slide" focus area (Figure 15.3). This indicates that the two
cooperate to support the work, that the user needs to know where
they are on the slide while checking spelling and needs to switch back
and forth rapidly between the two. (When errors are marked as you
type, the function has been merged into one focus area.)

This is a partial reverse User Environment model of PowerPoint,
showing the primary parts of the formalism and what they represent
in a real product. (See "User Environment Formalism" for a complete
definition of the formalism.) Each box or focus area represents a
coherent place to do work. The links between places show how the
system supports the flow of activities but doesn't prescribe any partic-
ular order of work. The double-linked focus areas in Figure 15.3 show
how the spell checker is related to the slide view; it says nothing about
when the spell checker is run.

322 Chapter 15 The User Environment Design

U S E R E N V I R O N M E N T F O R M A L I S M

Focus area
A focus area collects hinctions and work objects into a coherent place in the system to support
a particular type of work. A function should be necessary to do the work, not to manipulate
the UI:

—Supports performing a coherent part of the work
—Named with a simple active phrase
—Lists functions that are needed to do the work
—Lists the work objects that the user needs to perform the work
—Numbered f"or unambiguous references to the focus area

Purpose

Short description of what the focus area does in supporting the work

Functions

Functions are described on the UED with a short phrase. They are written up online with a
description oi" their behavior and justification.

• Functions invoked by the user to do work
o Functions that are automatically invoked by the system as necessary. The user knows

these functions exist, but does not invoke them explicitly*
(name) Function clusters that appear in multiple focus areas. This is shorthand for listing all

the functions in the cluster. The function cluster name appears between parentheses
and is separately defined once to apply to all focus areas,

Links
Links and double links to other focus areas:

> Functions that support links between focus areas. An arrow between focus areas repre-
sents the link. The function name may not be the same as the destination focus area
name, in which case the name or number of the destination focus area should be given
in parentheses.

» Functions that support double links between focus areas. A double line between focus
areas represents the double link.

Work objects

The things the user sees and manipulates in the focus area

Constraints

Implementation constraints on the focus area: speed, reliability, availability, form factor (for
hardware), etc.

Issues

Open design issues associated with this focus area, UI ideas, implementation concerns, and
quality requirements &

The reverse User Environment Design 323

Hidden focus areas

Conceptual units of work done by the system that the user knows and cares about, but doesn't
have to interact with. Often they automate work that used to be done by a person. Represent-
ed as boxes formed of dotted lines, connected to other focus areas with dotted lines.

External focus areas

Conceptual units of work delivered by other teams. External focus areas show how your system
works with others to provide coherent support to the customer. J

THE REVERSE USER

ENVIRONMENT DESIGN

There are two ways to take advantage of the User Environment
Design. One is while designing a new system: seeing the structure
ensures that the system stays simple and close to the user s needs and
helps a team plan how to deliver. We'll show how to do that below.
The other is to do what we did with PowerPoint—build a reverse User
Environment Design to represent a product that already exists.

Building a reverse User Environment Design has a number of
uses: to analyze a competitive product, to reveal the structure of mul-
tiple systems that need to be integrated, or to repre-
sent an existing system version so it can be extended
in a new version. Building a reverse User Environ-
ment model of an existing system reveals its under-
lying work model. It reveals what users can think
about and do together in the system, and assump-
tions built into the system about how users work. In the PowerPoint
example above, PowerPoint supports changes to notes and changes to
the slide content in separate focus areas. This implies that creating
notes is an unrelated activity to creating slide content. It doesn't really
matter whether the system's designers intended that consciously; that's
what's built into the system.

Building a reverse User Environment model can be the first step in
designing the next version of an existing system. It's easy for systems to

A reverse UED shows

your implicit existing

system work model

324 Chapter 15 The User Environment Design

get more unstructured over time—what started out as a reasonable and
elegant design turns into a rat s nest of features and connections with
no clear structure. Before adding new function, build a reverse User
Environment model to see structural issues in the existing system.
Modify the design to capture decisions about what to fix. Then you
can make storyboards to capture new work practice for the next ver-
sion to support, and you can use the process we describe below to roll
them into the User Environment Design. In this way, you can add
function without losing the systems overall design coherence.

When one developer was introduced to the User Environ-
ment Design, he started laughing hysterically, then grabbed a
piece of paper and started sketching boxes and arrows on it. "I
just figured out why users hate our system,5' he said. "This is
what it looks like." He showed us the diagram he had drawn:

□ □ u

A reverse UED of your

competitor reveals the

field of opportunity

"See? They have to go all the way back up to this top box
and then down again to do anything."

Using the reverse User Environment Design to see the structure of
competitive products can make it clear to a team what the grounds for

competition are. For example, most presentation
packages have essentially the same structure at the
User Environment level. The three focus areas of
outliner, slide sorter, and slide editor are very com-
mon. The grounds for competition in presentation
packages is at the level of detailed function and UI;

the first product to shift the ground through a fundamental improve-
ment in structure or UI paradigm will gain a substantial competitive
advantage. Conversely, QuickMail Pro's market message (from their

Building the User Environment from storyboards 325

marketing literature) is that it offers a base structure different from
that of other mail products: "The All-in-One' Message window lets
you simultaneously view your incoming messages, create and send new
messages, and file or sort existing messages." Instead of providing sep-
arate focus areas for the in-box, sent messages, and filed messages, it's
got one focus area for all three. This will only work if the work prac-
tice of users naturally mixes these different activities; otherwise it will
be confusing.

The reverse User Environment Design is a good way to step back
from a system and get insight into it. Surprising numbers of systems have
the hierarchical structure that the engineer recognized
in the story above. But the reverse User Environment
Design may also reveal the values and assumptions
about the work practice built into the existing prod-
ucts. When these are explicit, the team can compare
them to the work models representing real customers
and decide whether the assumptions built into the
current systems work for the market or organization. For example, one
team developing a collaborative work tool that allowed anyone to drop in
on any conversation realized they were promoting a value of open com-
munication to an extent that might stifle the use of their system.

The reverse User Environment Design gives a team a way to see
what the users experience as they move through a system. Its a valu-
able tool in its own right. But the User Environment Design is also
central to designing new systems.

Discussion during a
reverse UED reveals
designers' values and
assumptions

B U I L D I N G T H E

U S E R E N V I R O N M E N T FROM

STORYBOARDS

In the design of a new system, storyboarding drives the design of the
User Environment. We discussed in the last chapter
how design alternates between sequential thinking
and structural thinking. Storyboards are sequential
and run a single thread; the User Environment
Design is structural and reveals how all the threads
fit together coherently. Storyboards give a lot of

A good structure suggests

and supports unforeseen

ways of working

326 Chapter 15 The User Environment Design

information about a part of the system in the context of a specific
use—how that part of the system supports one work task. The User
Environment Design lets a team build the single coherent structure
that supports multiple different tasks performed by different roles. It's
a framework, a structure for doing work that is not constrained to the
particular storyboards used to build it. Users will invent new ways to
do their work based on the structure in the User Environment De-
sign, if it's designed well.

Separating storyboards from the User Environment Design (and
from subsequent user interface design) helps a team separate different

kinds of design thought. Storyboards support follow-

Separating storyboards

from the UED keeps

design conversations

separate

Storyboards imply the

new system structure

ing a single story of use: "I'm a user sorting my mail.
How do I approach it? What do I do?" This is one
approach to designing a system. It ensures that the
system hangs together from the point of moving
through a task, but it tends to hide the relationship
to any other tasks the user might do. The User En-

vironment Design supports structural thinking: "What's really going
on in this place? Is it supporting a single, coherent activity? Does it
provide everything the user needs to do that activity?" With two dia-
grams, each focused on supporting one kind of thinking well, the con-
versations can be separated for the team, making them clearer and easi-
er to have.

The User Environment Design is built from storyboards one at a
time. Each storyboard contains implications for place, functions, and

links in the User Environment Design. After the
implications of each storyboard have been incorpo-
rated, the team steps back and looks over the whole
User Environment Design with an eye to maintain-
ing coherence. They identify focus areas that overlap

in purpose and merge them, clean out focus areas that have accumu-
lated extraneous functions, and reorganize the structure so that every
focus area has a clear purpose and appropriate links to the rest of the
system. (Constantine [1995b] describes building systems from a "use
context model," a similar process.)

A team pulls structural implications out of a storyboard by walking
through it cell by cell. Each cell may suggest a new focus area, func-
tion, or link in the emerging User Environment Design. Storyboards
are pictorial and help a team recall the context and the implications of

Building the User Environment from storyboards 327

each cell for the design better than a scenario or other textual descrip-
tion. The team discusses these implications and revises or extends the
User Environment Design to capture their decisions.

The sketches that are part of storyboards give designers a way to
think in the language most natural to them, while still staying out of
the low-level details for as long as possible. The User
Environment formalism is a direct representation of
the issues for structuring the user's experience of the
system. But weVe found that teams coming up to
speed on the User Environment formalism don't
find this new representation a natural form for think-
ing. They do better thinking and designing in UI
sketches, capturing them in the storyboard, and then pulling out the
implications for the User Environment. The more they go back and
forth between User Environment Design and user interface, the more
they start to see the design implications from the User Environment
diagram directly, and the more it will work for them not only as a see-
ing and checking tool, but as a design tool.

Here's how the process works in practice. The storyboard in Fig-
ure 15.4 shows the first steps of a user getting help in a new work
redesign. The vision implies a mix of hardware and software to imple-
ment: the phones are altered to have a "help" button, and the phone
system is tied into the computer system so that the call is associated
with the office and user where the phone is located. When the call is
routed, the first-line helper's phone rings, and at the same time this
information is displayed on her screen.

Because the system is a mix of hardware and software, some focus
areas in this User Environment represent physical hardware places as
well as software screens. In this way the User Envi-
ronment diagram can be extended to represent the
total system delivered to the user: hardware, soft-
ware, documentation, and other systems. (It won't,
of course, represent other aspects of the corporate
response such as marketing or services.) The phone
acts as a place to do work in an office: the work it
supports is communicating with others. The help button adds a func-
tion to the place: get quick help on system problems. So the implica-
tion of the first cell of the storyboard is a new function on an existing
hardware focus area in the user's office (Figure 15.5).

Moving between
storyboards and the
UED helps designers see
structure in the UI

The UED can
represent hardware and
software that the user
interacts with

328 Chapter 15 The User Environment Design

M?RdW

User luis "fc-üutLt?

■ E* **r. .:*■ :'*ä?«3»'^ttwSÄaies'-MS :-.*?■;■

Vû),Us.er. co/Ctcvir pops evi scrxxit

User adute

::■.¥>;-<: v-î'*-; <**aMrama«iK:

©

to SL{SLÜ'K ^Uüi prohibit us&r

LC

lc licuxr

-mswrLj >or system v

A"[tjiiorL) upqntfLc OR \/i)/r bi) p i c I t a

Toulür%iilt V H

bifSLuK problems; bciirch LLST

Q
^ .'-■■-..v: - ■'- ::. ^jàSra^-^Vî^Siiiafciirï*- ■

F I G U R E 1 5 , 4 Storyboard for getting help from system management.

The UED shows only
what users care about or
interact with

The next cell shows how the system acts when the help button is
pushed. It's necessary for working out what the system will do, but it

isn't part of either the user s experience or the first-
line helper's experience; it's entirely behind the
scenes. In the next cell, the result of these behind-
the-scenes actions is to display information on the
first-line helper's screen and ring the telephone. So

Building the User Environment from storyboards

1. Call for help

Provide quick access to helper

Links
> Ask for help
Work objects
User
Telephone
Associated system
Constraints
• This is a telephone; must

designate a button for help

F I G U R E 1 5 . 5 A focus area representing new functions on the user's phone.

1. Call for help
Provide quick access to helper

Functions
o Transmit user data based on

phone's association with

system

Links
> Ask for help
Work objects
Associated system
User

Telephone

Constraints
• This is a telephone; must

designate a button for help
• Need to integrate database

of users, history, and phone
numbers

F I G U R E 1 5 . 6 Function added to an existing focus area.

these actions flesh out the definition of the "help" function; they don't
lead to a new focus area (Figure 15.6).

When the screen comes up on the helper s workstation, it creates a
new focus area showing the information necessary to work on the
users problem. The information about the user, his system, and any
history is displayed immediately, without any explicit request on the
part of the helper. This is represented as an automatic function. We
choose a name for the focus area that is terse and describes the primary

330 Chapter 15 The User Environment Design

1. Call for help
Provide quick access to helper

Functions
o Transmit user data based on

phone's association with
system

Links
> Ask for help

Work objects
Associated system
User

Telephone

Constraints
• This is a telephone; must

designate a button for help
• Need to integrate database

of users, history, and phone
numbers

-->

2. Work on user's request
See, work on, and track user's problem

Functions
o See user name and system associated with telephone
o See history of and comments on this problem
• Enter comments on problem or request, including what has

been tried
• Enter solution to problem
o Update problem history
• Assign self as owner
• Reassign owner (to specified person or to next-level support)
• Cancel problem
o Log ticket into system (when assigned)
o Display time spent on problem (when assigned)
• Mark problem done
• Pause timing
• Restart timing

Links
> See system's history
> Get guru help
Work objects
User
System
Problem
Owner
Issues
• What if the help person isn't there?
• How do people see all their problems?

Roles
• This place will be used by both first-line helper and

responsible person

F I G U R E 15 .7 Two focus areas connected by a hidden link. Each focus area col-
lects the functions out of all storyboards needed to support the work of that place.
They begin to act as a system specification, organized into clusters that support a
coherent work activity.

work it supports: in this case, "Work on users request" captures the
essence of what the place is for (Figure 15.7).

The link between the phone and the new focus area is not an
explicit link; neither the user nor the helper move between the phone
and the "Work on user's request" focus area. The communication
between the two is in the behind-the-scenes work. We show this on
the User Environment as a dashed line, showing how the system sup-
ports communication between the focus areas.

Building the User Environment from storyboards 331

The storyboard defines additional functions needed by the helper
in this place: the ability to turn on and off time charges, assign owner-
ship of problems, and record solutions. We write
these functions right into the place. And we add the
objects the user works on in this place to the focus
area also—the problem report and the user informa-
tion. Later, when it comes time to build the object
model, the functions will define the behavior these
objects must support by specifying what to write into the use cases
that drive object modeling.

The next storyboard step has the helper looking at detailed system
history. At this point, she's not thinking about the overall problem and
system anymore; shes thinking about what has happened on the system
that might tie into current behavior, either to support or suggest
hypotheses. This is a different kind of work from the initial, direct dis-
cussion with the user about their problem. The system support for it is
quite different—this part of the system is organized around browsing,
free-form searching, and locating pieces of history by association. All
this implies a new focus area, "See systems history/5 which is linked to
"Work on user's request." Links are like other functions in that the user
has to take an explicit action to follow the link; they're different in that
the effect they have is to move the user to a new focus area. We find it
useful to collect the links together in the User Environment Design so
people can see the connections all together.

This decision about when to create a new focus area is critical to
the User Environment Design. Focus areas support one part of the
work and are organized to support it well. Whenever

Objects in a focus area
reveal the things the user
works on

the user is doing a new kind of work, worrying
about a different set of concerns, or engaged in a
different style of thought, it implies a new focus
area. This generally means that the user should work
in any focus area for some amount of time, just as
people expect to spend time in a room. It's hard for people to shift
their attention from one kind of work to another frequently—the sys-
tem should not force such a shift unless the work demands it.

When rolling storyboards into the User Environment Design, it's
the work the storyboard represents that defines the focus areas in the
User Environment. The designers of the storyboard were thinking in
the UI and may have created subwindows or dialog boxes, but if they

A good focus area doesnt
complicate or fragment a
coherent activity

332 Chapter 15 The User Environment Design

Inquiry into multiple

storyboards drives

the UED

don t support a different kind of work, the system doesn't need new
focus areas. Conversely, if the storyboard mixes unrelated work in one
interface, it implies several focus areas in the User Environment De-
sign. This is the time to clean that up.

The process of generating a User Environment
Design from a storyboard continues in this manner,
using the discussion of each cell in the storyboard to
identify and capture new focus areas and extend
existing focus areas (Figure 15.8). But the User En-
vironment is the structure that supports all stories.

After doing the first storyboard, roll in additional storyboards in the
same way

The first cell of the storyboard in Figure 15.9 identifies a place in
the system we haven't seen before—a place for seeing all the work
assigned to the user. We add it to the User Environment Design. Then
the next step defines a place for seeing an existing problem. But when
we look at the User Environment Design we already have, we see that
"Work on users request" already allows us to see and work on a prob-
lem. Should this cell reuse that focus area or create a new one? This is a
question about the appropriate system structure for the work.

The new storyboard suggests a new way of thinking about the sys-
tem structure. The first storyboard created one place from which to
manage all the work of dealing with a problem. That place acted like a
control panel or command center, providing access to all the different
tools that might help resolve the problem:

2. Work on user's request
See, work on, and track user's
problem

w
w

5. Diagnosis tool
Access ailing system with
special diagnosis tool

The new storyboard suggests a different approach. Instead of a sin-
gle command center, the new storyboard breaks out the passive work
of seeing the description of the problem and any work done on it to
date and documenting any new actions. By breaking the act of work-
ing on the problem into a separate cell with a separate UI sketch, the
storyboard suggests that access to tools be part of a second focus area:

2. See trouble ticket
See description of problem and
history of work done to date

3. Act on ailing system
Access tools to work on
ailing system

w
w

5. Diagnosis tool
Access ailing system with
special diagnosis tool

1. Call for help
Provide quick access to helper

Functions
o Transmit user data based on

phone's association with
system

Links
> Ask for help

Work objects
Associated system
User
Telephone

Constraints
• This is a telephone; must

designate a button for help
• Need to integrate database

of users, history, and phone
numbers

--->

2. Work on user's request
See, work on, and track user's problem

Functions
o See user name and system associated with telephone
o See history of and comments on this problem
• Enter comments on problem or request, including what has

been tried
• Enter solution to problem
o Update problem history
• Assign self as owner
• Reassign owner (to specified person or to next-level support)
• Cancel problem
o Log ticket into system (when assigned)
o Display time spent on problem (when assigned)
• Mark problem done
• Pause timing
• Restart timing

Links

> Get guiu help
Work objects
User
System
Problem
Owner

Issues
• What if the help person isn't there?
• How do people see all their problems?

Roles
• This place will be used by both first-line helper and

responsible person

w
w

3. See system's history
See the past problems with this system and
how they have been resolved

Functions
o See system type, hardware and software

installed
o See problems on this system, who worked

on them, when and how they were resolved
• Search for problems of particular type

Links
> Get guru help

Work objects
System
Problem history
Comment

r

V

4. Guru help
Tracks and allows user to find problem
solutions

Functions
• See problem topics
• See names of other helpers
• Specify type of problem you want

to find
• Search
o View search results

Work objects
Problem
System
Helper

öd

3
CfQ

W
D <
3"
3

o

F I G U R E 1 5 . 8 The complete User Environment Design generated from the first storyboard.

oo

334 Chapter 15 The User Environment Design

rvs a
Ist i\ opüi pvbLoHS I

trcb 1.

Si|stùn 111,11140* clwscs

^

^c U S L T .

sic .

1

Sùci ,i ùixscr^u^L i,v flic problem

-R)
Vvl%

MJ\rl«\\U
LlTC

1 ?J\C\ resale

L__ J
TCCCSS3 "fcvis 1? idvk. 0:1

UlC L-lvRtJI-l i l ü iCC

-1

A

F I G U R E 1 5 , 9 A second storyboard, in which the system manager starts from a
list of assigned tasks instead of starting by answering the phone.

These are different options for structuring the system. Up to this
point, neither option has been given careful thought. The designers
did what made sense for each storyboard without careful considera-
tion of the implications for the system. Now that the two storyboards
are coming together in the User Environment Design, the team can
have the conversation about which structure would be best for the
work as they have observed it. Should a trouble ticket be like a form,

Building the User Environment from storyboards 335

capturing the whole history of the work that has been done on this
problem? That would be a close duplication of a paper ticket, an
essentially passive holder of information. Or should a trouble ticket be
an active working place bringing together the knowledge and context
of the problem with the tools needed to work on it? The User Envi-
ronment Design helps the team have this conversation with the aid of
sketches like Figure 15.9. By removing UI details from the conversa-
tion, the User Environment diagram keeps the conversation focused
on structure.

In the actual case, the design team decided on the first of the two
options and prototyped it with the helpers. The helpers liked having a
single command center for dealing with problems
but went further: they wanted the interaction with
their tools to happen in the same place. And they
didn't need to see all the details of the user in that
place. The User Environment Design implied by
these changes keeps a place to work on the user's
request, but it integrates the tool results into that place through a
linked focus area. And the detailed information about the user is
moved into a separate focus area, accessible, but out of the way:

Different storyboards

suggest alternate structures

to reconcile in the UED

7. See user details
See detailed information about
this user

2. Work on user's request
See, work on, and track
user's problem

6. See tool result
See the results of actions using
the different tools in the context
of working on the user's request

The concepts provided by the User Environment diagram make
this discussion easier to have. They focus on the critical question for
this level of design: what are the places the system will create, and
what work will they support? The different diagrams above support a
discussion about what structure fits the user's work best, disregarding
UI considerations.

Similarly, these discussions precede any object modeling for the
system implementation. If objects were derived directly from the story-
boards, there would be no opportunity for this level of structural
thinking. Each of the different options above suggests different techni-
cal challenges, a different set of use cases, and a different object model.
In particular, the third option suggests a use case describing how
invoking a diagnostic tool causes that tool to run on the appropriate
system and show its results right in the "Work on user s request" place.

336 Chapter 15 The User Environment Design

Neither of the other two options suggest that use
case. By designing the structure of the system work
model first, the User Environment Design helps sta-
bilize the design before object modeling starts and
limits the amount of rework needed afterwards.

D E V E L O P I N G S P E C I F I C A T I O N S

When you have to work within a software process that expects a software specification,
the User Environment Design can take you much of the way. The User Environment Design
defines how the new system will behave and organizes its function in a way that makes sense
for the user. Based on this, you can drive the different parts of the specification. A typical spec-
ification might have the following parts:

Overview: The first part would give an overview of the whole system, its goals, and its
basic structure. This is illustrated with a high-level User Environment model—titles, purposes,
and links only, as in Figure 14.5. This section introduces the reader to the system and orients
them to the parts of the system, showing how the different parts support users' roles and tasks.

Supporting data: This section summarizes the customer data on which the system
design is based. It shows key sections of the affinity and consolidated models, reviews the roles
that the system primarily supports, names the primary influences that drove the design direc-
tion, and summarizes the structure of consolidated sequences for key tasks. Particularly when
customer-centered design is new to an organization» it's important to emphasize how a design
is built on and responds to concrete customer data,

Functional requirements: This is the basic definition of what the system does. Its orga-
nized by focus area. Each section introduces the focus area and describes the work done there.
For each function, it names the function and provides a full description of the functions
behavior. In this way, it avoids presenting long lists of functions with no organized intent—
instead, it s clear how the functions together support particular activities. Objects manipulated
in the focus area are named, and constraints and issues are listed. Where the specification
includes user interface designs, they are described with the focus area definition,

Nonfunctional requirements: Additional requirements on the system—performance,
reliability maintainability, evolvability, platforms supported, and so on—are listed in their own
section. These are collected from the affinity and extended while building the User Environ-
ment Design but aren't associated with any particular focus area. They are kept on the side for
inclusion in the specification later.

Objects: The objects manipulated in the different focus areas are listed with the focus
areas but described once, here. The meaning and usage of the objects across all focus areas are
described. This will act as a starting point for later object modeling. Use cases will describe the
detailed behavior of the system, and out ofthat, the behavior of each object can be defined,
and additional implementation objects identified. O

Different UEDs imply

different object models

Defining a system with the User Environment Design 337

External interfaces: External interfaces to the system are described. We'll show in the
next chapter how links between focus areas can define interfaces between one system and
another. In this part of the specification, these interfaces are collected and described.

It's easy to integrate detailed requirements tracing into this structure when your organiza-
tion requires it. In each function definition, list the storyboard cells that used that function.
Document each storyboard and record the consolidated sequence that you used to define it.
List any additional data you used—sections of the affinity, role definitions, or other pieces of
consolidated models. Document each consolidated model online, and link it to the individual
models from which it was built. Do this, and you'll be able to take any function and walk the
steps backwards to the actual customer data that suggested the design ofthat function, ü

DEFINING A SYSTEM WITH THE

USER ENVIRONMENT DESIGN

The User Environment Design keeps the user's work coherent by
holding the whole definition of a focus area in one place. If you have
no physical representation, it's too hard to look across a whole system
and decide if the parts of it are coherent and where a new function
should go. But when the system is concrete in a diagram, it's not hard
to scan the purpose and existing function to find the right place for a
new extension. When a focus area gets too complex, it's straightfor-
ward to review it and related focus areas. What roles does the focus
area support? What tasks? For each role, is the focus area reasonable?
What's really needed? Using questions like these, designers can rebal-
ance the focus areas and clean up the design.

Within each focus area, the list of functions, links, and constraints
summarizes what can happen in that place. As a list, it supports
checking the completeness of the focus area—it's easy to scan and
check against the issues raised by models and storyboards. Keeping
the UI sketches from the different storyboard cells that contributed to
a focus area gives additional context: they show what the designers
were thinking about when they developed the place. Because they are
sketches, they are more concrete, helping designers envision what a
system based on this User Environment Design might look like. And

338 Chapter 15 The User Environment Design

1. Edit document
content

See and change the
content of my
document

2. Choose standard
bullet

Choose from a short
list of standard
bullet and list types

3. Modify list
format

Choose from the
most recently used
bullets, and change
the list format

— ►

4. Choose bullet
character

Choose the character
to use as a bullet
from all characters
in a font

F I G U R E 15.1 O When a focus area leads to one other focus area, which leads to
one other after that, you have a "leggy" User Environment structure. The user will
have to go through multiple layers of windows to accomplish a function. This is the
structure for defining the bullets in a bulleted list in Microsoft Word. How many dif-
ferent ways are there to choose a bullet? And how many different focus areas do you
have to go through before you can choose one? In this case, the focus areas are creat-
ed by dialog boxes; each dialog box creates its own concern by offering a different
interface and different function that the user has to parse and understand. Not every
dialog box would be represented as a focus area. Microsoft Word's "Zoom" dialog
box is simpler and would be considered part of its parent focus area.

The UED works against
proliferation of dialog
boxes

they give UI designers a starting point for designing the presentation
of the focus area,

Thinking in terms of focus areas and links tends to keep the basic
work of the focus area in the focus area, rather than spreading it over

several. Thinking in terms of todays user interfaces
allows—or encourages—spreading the function
across windows, panes, dialog boxes, tabbed dialogs,
and other gewgaws. Look at the way MS Word uses
three layers of dialog box to specify bullets (Figure
15.10). Thinking in the UI raises worries about con-

straints of screen real estate and problems of specifying every detail of
a function; it's easy to punt and decide to put the function in a dialog
box. Thinking in the User Environment Design takes away that
excuse—if the function is part of the work of a focus area, it goes into
the focus area.

Later, when it's time for the UI designer to create a user interface,
the User Environment Design will have collected all the different
functions from all storyboards and organized them into coherent
areas, each focused on one kind of work. It's up to the UI designer to
figure out creative ways of making the function available in one coher-
ent place in the interface. This gives the UI designer the most flexibili-
ty to be creative—deciding to split a focus area because it will be too
hard to design the UI prejudges what the UI design will be able to do.

Defining a system with the User Environment Design 339

The sketches from the storyboards offer suggestions for the UI
design and show the concepts the storyboard designers intended to
reveal. But the UI designer has to decide, for all the
storyboards collected into this place, and for all the
roles and tasks the place might support, what is the
UI appearance that will support the work best. In
the above example, the "Work on user's request"
focus area has to let the first-line helper see what
work has been done on a problem and also support the system man-
ager doing the work on the user's system. The User Environment
Design specified that they could both take advantage of the one focus
area; now the UI design has to support both roles. The first-line
helper has an irate user on the phone; he needs a clear and direct
interface. But he does want to see the whole history of the problem.
The system manager wants powerful access to all the tools, but if that
access is provided, she can benefit from the clear and direct interface
the first-line helper needs. The UI designer has to consider both roles
when designing the presentation and access mechanisms.

This is the ongoing process of extending a design: create a story-
board to work out the implications of a new component to the user's
work practice, then roll it into the User Environment Design to see
how the system structure can support the work practice you've
designed. Storyboards keep the work coherent; the User Environment
Design keeps the system coherent. Additional storyboards build up
the User Environment Design into a structure that responds to all the
multiple tasks and roles the system must support. The resulting User
Environment Design shows all the parts together, how they relate, and
how they overlap.

The UI designer makes
function accessible for all
users and tasks

DEVELOPING T H E O B J E C T M O D EL

The next task facing the team after developing the User Environment Design (and check-
ing it with users, which we discuss in the next part) is to start the design of the implementa-
tion. This is what use cases and object modeling are all about. We will not treat object model-
ing in depth, but the design work done in storyboards and User Environment Design gives the
team the basis they need to design the implementation quickly. C^

Chapter 15 The User Environment Design

The usual method is to start with use cases and define classes and class hierarchies from
them. Going from use case to object model is another example of switching between sequential
and structural thinking; the use cases are a story of use, the object model is structural, and {if
used) object interaction diagrams are a story again. But, as practiced in the industry use cases
may be very high level, showing a whole task in the work, or low level, showing the accom-
plishing of a smaller function. And its always an issue to decide what ought to be specified by
the use case anyway.

When building on a Contextual Design project, we incorporate use cases at two points.
First, storyboards act like high-level use cases. They show how real users interact with the sys-
tem to get tasks done. At this level, the storyboard is well grounded in a consolidated sequence
and the vision, so there are clear criteria for what should be included. But the storyboard for-
mat is more appropriate to this high level of design. Their pictorial nature makes it easy to scan
and see the emerging design. And, while use cases include preconditions, postconditions, and
exceptions, we've not found it necessary to specify these at this high level.

The User Environment Design provides a high-level structural thinking step that
responds to the storyboards. Change the structure or function at this level, and the object
model for the implementation will change; merge two focus areas and expand the function of a
work object in the User Environment Design, and the corresponding implementation object
will take on new responsibilities.

Later, object modeling captures these implications by switching back to sequence-based
thinking in low-level use cases. At this level, each use case tells the story of how one function
or closely related group of functions operates. The use case is based on storyboards and User
Environment Design: the storyboard defines what the user will do, while the User Environ-
ment Design defines the function. The use case works out precisely what happens when the
user operates these functions, how the system responds, and how the system internals make the
designed response possible. They reveal flaws in what went before and drive the next step. Use
cases bridge the gap from design of the system work model to design of the implementation.

Similarly, the design team derives events and triggers driving the implementation from the
User Environment Design. Whether initiated by the user invoking a function or initiated by
the system as indicated by automatic functions, the User Environment Design defines the
events that the implementation needs to handle.

Building the User Environment Design as an intermediate step between storyboards and
use cases helps ensure that the structure built into the use cases holds together for the user. Until
the User Environment structure is stable, there isn't a design to build use cases on—changes at
the User Environment level will change what happens in the use cases. Without an explicit rep-
resentation such as this, the only way to work out structural issues is in the implementation and
the UI. The more we can reveal, identify, address, and test these issues with users before starting
implementation design, the faster implementation design and coding will go. □

User Environment Design walkthroughs 341

U S E R ENVIRONMENT DESIGN

WALKTHROUGHS

The walkthrough is the final step of building a User Environment
Design, and it should never be skipped. It's always done before going
on to design a UI or test the design with users. The User Environ-
ment Design walkthrough uses principles of good system structure to
check the design. Even a careful team will, as they roll more and more
storyboards into the design, start to déstructure it. A focus area that
started out clean will accumulate function until the original purpose
gets blurred. Perhaps any individual function could be justified, but
taken together they suggest a different work focus that should be sepa-
rated out. Two focus areas that started clearly distinct will, as function
is added to each, start to overlap to the point that the distinction is no
longer clear. The team needs the walkthrough as a chance to withdraw
from the design, take stock of it, and reorganize what has started to
get messy.

You'll see another level of structure when you walk through your
design. The design itself suggests new possibilities when you pause to
inquire into it. A set of focus areas taken together
may imply support for a whole task or role; three
focus areas might be consolidated into one address-
ing the fundamental task more directly; or functions
in several focus areas suggest an activity that could
be supported directly in its own focus area. It's this
step of rationalizing the design against the work that will lead to a
solid, flexible base structure that supports many different uses.

Walking the User Environment Design also gets the team into
position for the next phase of design. It ensures that the whole team is
clear on what they intend by the design and how they think it will
work. It identifies test cases—conditions or design elements that be-
come a focus to test with users in prototypes. In this way it becomes
the first step toward iterating the design with users.

The walkthrough lets

you be the groundskeeper

redesigning the quad

Chapter 15 The User Environment Design

1. Main menu
See what I can do

Links
Shop
Member services
Tips for working
moms
Refer a friend
AHA online

> Peapod Pantry
> New on Peapod

16. Peapod Pantry
Join a community of
shoppers

> See shopping tips
> See recipe aisle

17. Recipe aisle
See different kinds
of recipes available

> Recipe of month
: > Lost recipes
> Found recipes
> Write the Peapod

Pantry

w
W

21. Recipe of the
month

Read a recipe chosen
by the Pantry
maintainers

F I G U R E 1S .11 When a focus area contains no function, only links to other
places, you've got a hallway. Here in Peapod are three hallways in succession (1, 16,
and 17) before the user can get to doing anything real. System designers frequently
create places that have no purpose except to organize access to other places. They are
like hallways in a house, where no actual living is done but doors open onto other
rooms. Hallways are necessary in houses because of the physical constraints in laying
out a house, but in a software system every place can support real work. This kind of
structure is often an indication that the designer is carrying over old ways of thinking
from non-GUI systems.

PROBING U S E R ENVIRONMENT DESIGN
STRUCTURE
The questions to ask when checking a User Environment Design are
similar to those that drove building it:

Are focus areas coherent? Does each focus area support one
activity within the overall task? Is that represented by the title and
purpose statement? Be suspicious of any focus area that has no pur-
pose. It's often because the team isn't clear on what the purpose is.

Do focus areas support real work? Look for focus areas that are
really glorified dialog boxes—they've turned a simple command into a
whole subtask (see Figure 15.10). Look for focus areas that group relat-
ed functions, but that don't support something you might work on.
Look for focus areas that don't support a coherent work task, but
instead only reveal the data associated with an object in the system.

Are functions correct? Look for functions that are not in direct
support of the focus area's purpose. Do they imply a separate activity
that should be separated into another focus area?

Are focus areas distinct? Collect the focus areas that support the
same part of the work—the same activity, task, or role—and compare

User Environment Design walkthroughs

them. Are they clearly distinct? Do they, taken together, provide
coherent support for this part of the work? Can they be recombined
to give a cleaner set of distinctions for doing the work?

Do links make sense? Do they support the work task as you know
it from the consolidated and redesigned models? Certain patterns of
links and focus areas always indicate trouble (see Figures 15.10
through 15.12). Do any of these patterns appear, and do they indicate
problems in the design? (Incidentally, notice the simplified form of
focus area used in Figure 15.10, with only title and purpose. This is a
useful way to highlight structural issues.)

Is the work supported? Finally, use the consolidated models to
refresh your memory, and look at the User Environment Design from
the point of view of the different roles and tasks. Does the design
work for each different kind of user? Does it account for the issues
they care about? Run actual sequences through the model, asking how
this user would have done this task given the new system. See if you
can make it break down.

Using a walkthrough this way pulls the User Environment Design
back together into a structure that makes the user's work coherent.
Like a groundskeeper rethinking path layouts, the walkthrough gives
you a chance to step back from your design. Check it for fit against
the user, for missing parts, and for internal balance. Clean up the
structure, and then you can either test it with users or extend it with
more storyboards. Or, better yet, do both in parallel—the sooner you
get feedback from real users on their design, the better off you are.

15. Tips for moms
and dads

Read articles from
Working Mother
magazine

1. Main menu Aj

See what I can do

Links
> Shop
> Member services
> Tips for working

moms
> Refer a fnend
> AHA online
> Peapod Pantry

New on Peapod

731
16. Peapod Pantry
Join a community .
of shoppers ^

Links
> See shopping tips
> See recipe aisle

~z

22. AHA online
See American Heart
Association heart
health info online

17. Recipe aisle ^ ^
See different kinds of
recipes available

Links
> Recipe of the month
> Lost recipes
> Found recipes
> Write the Peapod

Pantry

18. Lost recipes
Read email sent in by
others looking for
recipes

Functions
o See message
• Print message

V
19. Compose message
Communicate with other

people in the Pantry

Functions
• Enter message to be

published

21 . Recipe of the
month
Read a recipe chosen
by the Pantry maintainers

20. Found recipes
List recipes found in
response to people's
requests

u \A

2. Stop and shop 0 ^
Get to things related to ^ l
shopping

Functions
o See date of information

Links
> Find out about the

information center
> Shop for groceries
> Information on grocery P ^

shopping
> Recycle plastic bags

4. Party center 4 ^ ^
Choose type of party ^^
to shop for

Links
> Choose party type to give
> Give feedback

h*

10. Info about
recyling
Tell user how to get
plastic bags picked up

3. Information center
See new product info
from manufacturers and
see Peapod's values

Functions
o See what Peapod

intends this pface to be
o See benefits of the

information center
o See Peapod's values

about advertising
• Print info

13. Review grocery
order

Ensure you're getting
what you intended
before ordering

Functions
o See items ordered
• Sort items
• Remove item from list
• Add to personal list
• Print
• Send order
• Specify how to

substitute
• Enter free text

comment

Links
> Deliver

11. Shop
Browse store to buy items

Functions
o See shelf chunks
o See shopping hints
o See scrolling ads
• Select shelf chunk
o See list of labels in

the chunk
• Select from list of

items and see subitems

Links
> Shop from personal list (8)
> See brands for item (5)
> Find item

14, Delivery
Specify when you want

your things delivered

Functions
• Specify delivery date
• Select desired time

s

5. Targeted item list
List of things appropriate for
the chunk you chose (party,
piece of store, item type)

Functions
o See items: name, quantity

price, unit price, sale/not,
fat amount

• Specify quantity
• Choose set order

• See total purchase

Links
> See detail of item
> Add to personal list

> See ad

issues
• Can't see the personal

list while shopping in store
• Can't refer to personal

list without entering a
number for item?

4*s

9. See current ad
See info related to
current time

N

8. See personal list
categories

See the categories in which
your personal list is
organized

Functions
o See categories
• Add item to category in

personal list
• Rename category
• Create category
• Delete category

12. Find item
Look for an item in the store

Functions
• Enter item or brand

o See hits

Links
> See list of brand items

for choice (5)

6. See detail of item
Find out more about
an item

Functions
o See picture if

available
o See detailed

nutrition info
o See price
• Add item to

personal list

Links
> See Peapod's

disclaimer
> See disclaimers

See Peapod's
disclaimer
Read limits on
accuracy of info
Peapod passes from
manufacturers

? ^

V-r,

°§'

F I G U R E 1 5 . 1 2 The Peapod User Environment. A reverse User
Environment Design for a shipping commercial product supporting
home shopping. This User Environment Design reveals a number of
structural issues in the product. The checked focus areas are all hall-
ways, supporting no real work (they have no functions, only links).
The gray arrow shows what's required to order one item, suggesting
the design is too leggy. And the lightning bolt shows how the recipe/
information part of the product is almost totally divorced from the
shopping part of the product (only one link connecting the two
parts—and that connects two hallways).

This example shows some strategies for analyzing complex real
products. In larger products, major subcomponents—such as the
"AHA Online" focus area above—often are represented by only the
first focus area in the component . This hides the complexity of
the component while still revealing the relationships with the larger
system. Each focus area only lists four or five primary functions of
that focus area, rather than listing them all. Of course, when the
User Environment Design is defining the product, such a diagram
has to be backed up with a complete definition of the function of
each focus area.

This page intentionally left blank

Project Planning and
Strategy

16
Because the User Environment diagram shows all parts of the sys-

tem in relationship to each other, it s a basis for planning as well
as a basis for design. Most systems are large enough that they need a
team of people to build them and have to be delivered over a series of
releases. Most systems don't stand alone; they work together with
other systems to support a whole job or business process. Its this col-
lection of systems that taken together must support a coherent work
practice. And software development organizations don't care only
about individual applications or products—they're often looking for
ways to tie their different systems together into a unified strategy for
supporting their target market or business. Such a strategy makes the
corporate response we discussed in Part 4 possible.

The challenge for project management is to define releases that
keep the user's work coherent and can be implemented by the people
available in reasonable time. Planning coherent
releases can take advantage of the User Environment
diagram as a representation of the systems, their
parts, and their relationships. The User Environ-
ment diagram guides planning by breaking the
design into natural components, relevant to the cus-
tomer, that can be considered independently. Whether these compo-
nents represent a small part of a single product or a complete applica-
tion in their own right, the User Environment diagram shows what's
going on in that component and how it relates to the rest of the sys-
tem. Based on this, a team can organize and plan their development
strategy.

Management challenge:
define releases that keep
user work coherent

348 Chapter 16 Project Planning and Strategy

The UED showing the

whole system lets you see

how to carve it up

PLANNING A SERIES OF

RELEASES

The usual situation with a systems development effort is to envision a
larger and more complete system than can easily be delivered in a sin-
gle engineering cycle. Whether its a product for sale or an internal
system, customers typically don't want to wait years to see the first
version. By then, they'll have taken their business to other vendors, or
their business will have changed so much that the system will no
longer be useful to them anyway. It's not even good engineering to
spend years producing the maximal solution—any system will miss
the mark to some degree. The sooner there's a version out there, the
sooner the team can correct their mistakes and build on the new work
practice that customers will invent around the new system.

It's important to envision the bigger picture. It gives you a goal
to strive for, a direction to your development. But use the larger vision to

define a series of releases, each leading you closer to
the vision and each deliverable in a reasonable time
frame. Many organizations aim to have the first re-
lease out in under a year, even for significant proj-
ects. This release sets the customers' first impression
of the system and organization that delivered it. The

system should make a splash in the market or make a significant con-
tribution to the customers' business. But it also needs to hang together
as a coherent way of working. Every function interacts with other func-
tions in the design—it's a waste to do large amounts of work to ship a
function and none to ship the other functions that make it useful. The
last-minute sessions to decide exactly what will make it into a particu-
lar version are the most painful. What's the criteria for choosing what
to cut? The last feedback from a user group? The most recent customer
to call an account representative on the carpet? Whoever shouts loudest
on the engineering team? Teams need a process for deciding what func-
tions are most important for the work of the customer and how to
deliver them in chunks that keep the work coherent.

When delivering to an internal client, basing development plans
on a long-range vision creates the possibility of integrating the devel-
opment schedule with the organization's business plans. Each piece of
the User Environment Design suggests new roles and new ways of
working—as each piece is implemented, the organization can put the

Planning a series of releases 349

process changes in place needed to take advantage of that piece. Keep-
ing the business reorganization and system delivery synchronized
keeps the process under control.

When delivering a product to a market, creating a larger vision
and delivering to it over a series of releases means you have a coherent
market message. Reveal the vision as your strategic direction, and then
each release is not only useful in its own right but is also another
down payment toward your commitment. Instead of selling individ-
ual features, you can sell product directions that address problems
people experience in their work. Everyone—marketing, sales, services,
and development—can push their work in this common direction.

Focus areas and the clusters of focus areas that together address a
common intent are one way of looking at how the functions of a sys-
tem group into subsets that can usefully be shipped
together. In Figure 16.1, the "Select base configura-
tion" and "Find configurations" focus areas together
let the user view, search for, and select a configura-
tion to use as the starting point for any changes.
These two focus areas work as a unit. It wouldn't
make sense to ship one without the other. However, the system could
ship without both—developers would then have to type the name of
the base configuration directly. This might be reasonable for a first cut
at the system.

Another way to prioritize the system is to deliver coherent support
for a role, responsibility, or task. The first responsibility of a configu-
ration management system is to support developing code, so the mar-
keting team might decide that the first release has to support develop-
ers. "Modify product" is the core focus area for developers, so it had
better be included. A minimal release would include just enough
other focus areas and functions to support making a change: choosing
a base configuration to modify, choosing the specific "parts" to edit,
making changes and testing them, and finally packaging up all modi-
fications into a single "change," which is put back in the system.

Once they make the decision what to include in the system, the
team makes a shipping User Environment Design showing just those
focus areas and functions that are intended to be part of this release
(Figure 16.2). This shipping design, when all focus areas and functions
are fully specified, forms the core of the software specification for this
release. By extracting the subset they intend to ship and representing it

Focus areas work together
to support tasks or roles—
ship them together

9. Create change
Package a set of file changes
as a single configuration
change

Functions
• Define name

• Describe change
• Add reviewer

• Submit change

Objects
Change
Part
Reviewer

7, View parts
See parts that match
search criteria

Functions
o View most recently

used parrs
o View part detail
• Edit part

Links
> Find parts

8. Find parts
Specify search criteria for

parts to see or modify

Functions
• Specify search criteria

• Search

Links
> Vtew parts matching

criteria
Objects
Search criteria

10. Edit part
Change the content of a
part (e.g., change code)

1. Modify product
See changes in progress and
enable new changes to the system

Functions
o See current configurations
o See current parts

Links
> Perfonn gatekeeper role
> Create new working

configuration
> Modify working configuration
> Get part
> Edit part
> Create cnange
> Check modification

> Communicate with team

Objects
Part
Configuration
Task

2, Select base configuration
Choose the starting point to
modify

Functions
o See recent configurations
* Show configuration detail

Links
> Cfioose configuration
> Modify working configuration
> Find configuration

12. Check modifications
Test to see if a change worked

- L L
3. Find configurations
Specify search criteria for choosuv
a configuration

Functions
• Specify search criteria
• Search

Links
> V-ew configurations match ng

criteria

Objects
Search criteria

r >

y

t
4. Modify configuration
Change a configuration by
including or excluding
changes

Functions
* Incorporate change
o See approved changes
o See unapproved changes
• Show change detail

Links
> Merge parts
> Query changes

Objects

Configuration

Change
Part

II
5. Find changes
Specify search criteria for

desired changes

Functions

• Specify searcn criteria
• Search

Links
> View configurations

matching criteria

Objects
Search criteria

Y

^

Irf

| configuration
I Create tested, working
(configuration for release

\ Functions
l o View current configuration
|o View current changes

1» View task detail

-I Links
| > Select base configuration
| > Modify configuration
| > Qualify configuration

- l> Communicate with team
|> Create release

Y>

1
flS. Create release ^

Package configuration in
a form suitable fo'
distribution to others
Functions

• Describe release
* Specify storage location

Links
> Communicate to team

Objects
Configuration

I I Release
Y Y

11. Mail
I Send email toothers

6. Merge parts
Reconcile two independently changed
versions of tfie same part

Functions
o See differences side by side
• Choose change from one version

Links
> Edit part

Objects
Part

Part content

)

14

Ensure that configuration

is good for release

Functions
• Check for completeness
• Check that can be built
• Create release
• Show configuration detail
• Communicate to team
• Reject change

Links
> Modify configuration

> Create release

Objects
Checklist for completeness
Configuration
Change

T

16. Test
configuration

Run standard tests
on a configuration

^ CN

2̂ if"

ri?*

F I G U R E 1 6 . 1 A User Environment Design supporting configu-
ration management. This design supports two primary roles: Devel-
opers, who code changes and extensions to the application, and
Gatekeepers, who ensure that any new code is good enough to
include in "official" versions. Each specific application version is rep-
resented as a "configuration"—the set of specific file versions for that

variant of the system. Developers work by selecting a "base configu-
ration" to modify and making their changes as changes to that con-
figuration. W h e n they are done, they package all files they've
changed along with the original change order and any assembly
instructions and submit that package as a "change." The Gatekeeper
can then review and test each change as a coherent unit.

352 Chapter 16 Project Planning and Strategy

as a User Environment diagram, the team can see whether that subset
stands on its own as a self-contained system supporting coherent work.
They can validate it, run scenarios through it, prototype it, and test it
with users. They can find out both whether it works as a coherent sys-
tem and whether it works as an interesting release—whether it pro-
vides enough to make customers interested in adopting it.

Reviewing the User Environment Design in Figure 16.2 suggests
that a cut supporting only development provides only minimal sup-
port for one role—hardly a competitive product, and with no extra
features for product differentiation. So marketing might decide that
supporting the Gatekeeper is a requirement for a viable product. It's a
fundamental responsibility of the Gatekeeper's role to review a config-
uration and decide whether it's good. So there's no point in shipping
any of the focus areas supporting the Gatekeeper if the system doesn't
include "Qualify configuration." It won't be used by Gatekeepers if it
doesn't support that part of the role.

It may not take all the functions of a focus area to support a role.
Only some of the functions of "Modify configura-

Ship the functions needed
by the role or task you
intend to support

Identify your core
contribution to your
customers and ship that

tion" are needed by developers, so if they are the tar-
geted users for a first cut of the system, the other
functions could be left out. When a role is the target
for a release, looking across focus areas for the core
function to support that role reveals what's most

important to include.
Finally, because the decision of what to cut is an engineering trade-

off that has to account for implementation difficulty, the team can con-
sider alternative presentations of a function or focus area in the UL The
UI can make the function easy or complicated to implement. For those
functions core to a focus area or to a role, it may be worth designing a
sophisticated UI that makes the operation of the function smooth and
easy. But for less central functions that are nonetheless needed to sup-
port the work, a bare-bones implementation may be sufficient.

All these ways of looking at how to prioritize a release depend on un-
derstanding what the core innovation of the new system is. What is the

one key change in people's work practice that the sys-
tem introduces? Don't look for a feature; look for the
key way in which the system makes work different.
Look for the key differentiator your product offers
over the competition or the core way your system

Planning a series of releases 353

9. Create change

Package a set of file changes

as a single conf igurat ion

change

Functions
• Define name

• Describe change

• Suomit change

Objet <'v.

C hange

Part

Reviewer

7. V i e w parts

See p j r l s t l i . i t match

^edrcïi enterki

Functions

o View-' most 'ecently used

parts

o View part detail

* hclit pert

link',

> Find parts

8. Find parts

Speedy search enter id for

parts to see or modify

Functions
* Speci fy search cr i ter ia

• Search

link*;

> View parts" matching

criteria

Otyec rs
Search c.nterui

10. Edit part

Change the content of a

part (e.g., change code)

1. Modi fy product

See changes in progress and

enable new changes to the system

Functions

o See current configurations

o See current parts

Link^

> C reate new work ing

conf igurat ion

> Modi fy work ing conf igurat ion

> Get part

> [d i t part

> C reate change

Object's

Part

Conf igurat ion

Task

2. Select base conf igurat ion

Choose the starting pomt to

modify

Functions

o See recent configurat ions

• Show conf igurat ion detail

links

■> Choose conf igurat ion

> Mucii'y work ing conf igurat ion

■> F nd conf igurat ion

3. Find configurat ions

Specify search criteria for choosing

a conf igu ia t ion

Functions
* Specify search enmru

• Search

links
> View configurations matching

c ntena

Object,

Search c i t e n a

6. M e r g e parts

Reconcile two independently changed

versions" of the same part

functions

o See differences side by ssde

• C hoose change f rom one version

Links

> h dit part

Objects

Pa it

Part content

4. M o d i f y conf igurat ion

Change a conf igurat ion by

including or excluding

changes

Functions

• Incorporate change

o See changes

• Show ctiange cietail

Links
> Merge parts

> Query changes"

Objects

Conf igurat ion

Change
Part

5. Find changes

Specify search criteria for

desired changes

Functions,

• Specify search a r e n a

• Search

Links
> View changes

matching criteria

Object

Search cr i ter ia

F I G U R E 16 .2 A shipping User Environment Design: a subset of the configura-
tion management User Environment Design supporting developers.

354 Chapter 16 Project Planning and Strategy

The UED maintains

work coherence during

implementation

helps your customers advance their business goals. Once youve identi-
fied the key differentiator, ask, What s the minimum subset of the system
necessary to introduce that change? The User Environment Design helps
to maximize the impact of a new system by showing what part of the sys-
tem will implement the core innovation coherently. Then you can build
on that to support more of the work, more completely.

PARTITIONING A SYSTEM FOR

IMPLEMENTATION

Real systems are built by more than one person—by teams working
together. If dividing up the system is to be useful, every developer
must be free to focus on his or her own part. But any requirements
document has holes—developers in front of their machines at 2:00 in
the morning will have to make decisions that affect the user. With the
User Environment Design, those decisions can be made with the
knowledge of how it affects the overall design and other design teams.
The User Environment Design organizes requirements to show how
the system is structured for the customer. But the User Environment
Design also helps manage a project by showing how it can be split up
for implementation by teams or individuals working in parallel.

The concepts of the User Environment diagram can help a team
keep the coherence of user work during implementation. Assign work

purely based on technology or implementation con-
siderations, and each developer may not have a
coherent piece of the work to code. That will lead
developers to lose the focus on the customer. They
can't see how the work is supposed to hang together,
so they have no way of knowing if a decision they

make disrupts the flow of work or supports it. Each focus area repre-
sents a coherent concern. It makes sense to assign whole focus areas
together, or sets of focus areas addressing a role or task, so that devel-
opers can see one complete piece of the whole. If the User Environ-
ment Design can be broken into components, as above, whole com-
ponents can be assigned together. People can think about and design
these coherent units as a piece because they hang together in the sys-
tem and in the work (Figure 16.3).

Partitioning a system for implementation 355

An implementation subteam needs a coherent part of the system
to design, and focus areas provide such an organizing theme. But a
large system will have multiple subteams, and some may be organized
around components of the implementation such as common objects
or technology components (e.g., the interface to a database). Organiz-
ing a project for delivery is a balance between keeping the user's work
in the system coherent and keeping the implementation coherent.

For any system to work, the teams focused on implementation
components need to understand how they relate to user-visible behav-
ior. A team implementing a reusable component to
embed video clips in mail messages, for example,
would have to understand how the activities of read-
ing and sending mail are structured so that the
reusable component can fit into the work smoothly.
It would be important to them to see as many different situations of
use as possible, to understand the requirements on the component
and how to make it a seamless part of the host system. A team imple-
menting a reusable component to support an underlying database link
would need to know what kinds of demands the systems might make
on that link.

The User Environment Design reveals how reusable components
relate to the system work model and shows who needs to work with
whom. A team building an object class to implement a work object
from the User Environment Design needs to work with the teams
building the focus areas where that work object is used. The teams
working on focus areas need to manipulate the objects and have a
stake in the design of the class. In the UI, the object is a visible screen
artifact and should appear consistently in all parts of the system. The
User Environment Design flags all the players who need to be con-
cerned about these elements so they can agree. In this way the whole
team—even those working on internals—stays grounded in the users
work. And the User Environment Design provides a map of which
development teams need to work together.

Links between focus areas assigned to different subteams show
points of integration. A link shows that one part of the product needs
to provide access to another part and that the work flows from one
part to the other. The parts need to connect technically, so some kind
of call or invocation mechanism needs to be provided. This might be
through the underlying platform (moving a mouse from one window

The UED reveals reusable
components

Chapter 16 Project Planning and Strategy

9. Create change
?A{ k :K)P rl SfM Of ii\p

(harrjns as a sinq'e
tonf guration t hange

F'/zfCf/wis
• Define n . i rT

• Destr be change
• And reviCWf"
• SutVMlt ('■:' '(]('

ObttKh
Cvnqe .
Par'
Reviewer

..c-y API

7. View parts I
See parts t ik i : matcW'
search a tend

Punitions
o v iew most rf<0'-!ly P

jsod parts
o View;: :] - ! de\: i l

• L(M ::a't

/..■MKS [

> Trie na't^

|8. Find par ts
Specify search n i te ' ia for
parts to set- or modify

U^cWonS

• Sppci'v s-\i'<fi c.r.ten,,
• Srann

Ls^.s
■■ View-' pads rratt'h r-f|

cntena

Oty« '-f r<i"
Soarc h c ntena

i. M *J

L
Ed't API

10. Edit part
Change the content of a
part (e.g., change code)

1. Modify product
See changes in progress find

enable now changes to tne system

Funatow,
o See c i r e n t c or■ f irj■.jr."■■ t ons

o See c.jr.-erit par's

Unks

> Perform gatekeeper m le
> Create n£?w working

confia a rat ion
> Modify working corr igera' or
> Get part
> Edit paM
> Create change
> Chock niooihcat on
> Communicate w \'r tearv

Part

Configurât on

Task

-Quahfv API-

Query API

Modify API

Qae*y API

2. Select base configuration
Chor.se tne starting ijoint to
rriOuMy

Fut it ?/ons
o See T (C " l configurations
• Showconf io^a l io r - detail

Link1-,
> Choose < ont'duration
> Modify work IT if | to rd qaratio
> Fin« conf igurator

4. Modify configuration
Change a coo figuration hv

including or exr hiding c ! an

Functions

• Incorporate change

o Sec app roveu c haupe-,

o See ur approved char ge^

• Show c hange f.U-hv

Lmk\
> Merge oarts

> Q.;ery c hanges

ObjOi f\

Cord quMt io f
Cnarcie
Part

3. Find configurations

Specify searcji c r i te r a *or rnoosing

a for-hquranon

rofK f.'O/JS"
• Spot ifv sear('■ < nteua

• Search

La)ks
> View (or-rici.j'ri: ons matching

Sear< h c ntena Merge API

12. Check modifications
Test to see if a change worked

6. Merge parts
Recur'c uv two r'denen de:üly
changed versions (.if the same part

Funa'oos
o Se^ u i f ten-cos sine by side
• Choose (n.inqe f 'o i r noe vem.o<

tmk\
> [d t p , -

Par:
Par u m t e r t

5 Find changes
Speedy search t r ten,

changes

Tune t/on\

* Spèu'y sc'rirt fi ; nîi

• Seau h
I inks
> View (Ofiiiqur.it o:

criteria

Ohjr-tt^

Search criteria

F I G U R E 1 6 . 3 The configuration management User Environment Design anno-
tated to show implementation details. The different patterns and shading show how
the focus areas have been assigned to implementation teams: one team has the Devel-
opers parts, another has the Gatekeepers, and a third has all the "Find/View result"
linked focus areas. Because these focus areas all present the same interaction style, it
made sense for one team to implement them all.

Partitioning a system for implementation

- Q j d H ' V A P I -

13, Create qualified configuration

O M 1 C tostpci. aork inn ronf rjurfition

fü ' ree,ise

R K K r.'fjns
o View U J " e r r

o Vif-w tt^rer, '

• View trvAs

* V e:v :<)>k oe;

I if ik S

> Seiet t Or i se1 (

> M o d l 'y (o n f c

> Q u d l i f y cor 1 f i t

> Co iT ' . rK jM iC i r t

> C rp<ue r e l t M M

o n f i c j ' j r n t i

' v i r q e s

i-

n f ' f i , jr<3tio

. i M t i o n

u r n t i o n

VV!t'i tearr

Â

15, Create release

P,u.L]qe co'ifK]'j,'<jt un iïi

,i îor - . s j iMh-efor

ri --.trmiction to others

fur>a;on\

• O f s c M l M i M ^ e

* Spec-t'y st(jrvjf^e o i d t o i

i>f\K\

> C n - m i / m ^ e :n !Cviii'

Otyecfs

C n n f - C K J M t O " .

11 . Marl

Send email to others r*~

14. Qualify configuration

fnsure That (onfiquratinn is qood

for rtvcviM i

/"ufK.fKVJS

• Check for complètent?^

• Check :hrit can be built

• Crente release

• Show r t j f i f ig j r r f t iof (Jeh-nl

• C(rT"ifeiirvuäte to tecsrn

• Rejet* c h H nue

> Modify conhq,.

:> Cre.ite release

Qiyxts

Checklist 'o- t o i -

Co , n f iqo'dtion

O w q e

-J t<

16. Test
configuration

Run standard tests
on a configuration

The User Environment Design has also been annotated to show internal appli-
cation programming interfaces (APIs) that the different implementation teams have
to agree on. There will be a standard Query API, for example, that will be consistent
across the "View/Find" focus area pairs. This Query API will be used whenever a
part of the system wants to present an interface that allows the user to search for and
choose an element to work on. Similarly, the User Environment Design shows exter-
nal APIs that the team has to conform to—the Mail and Edit APIs.

358 Chapter 16 Project Planning and Strategy

Use the UED
to help coordinate
implementation teams

to another), by using standard application integration mechanisms
(OLE or CORBA), or through special APIs. Eut not only do the soft-

ware components need to access each other, but the
user needs to feel like its one consistent system. It's
important that the system have a consistent appear-
ance and behavior across the focus areas that are
linked and used by the same people.

Use the UED to help
developers see their part
in the whole

The User Environment Design helps keep teams from becoming
myopic and overfocusing on one situation. The "Modify configura-

tion" focus area is used both by Developers and
Gatekeepers. If it were given to the subteam imple-
menting the Developer's part of the system, they
could easily overemphasize the Developer as their
user. The User Environment Design reminds them
they support two roles, two kinds of tasks, achieving

two separate intents.
UI implementation considerations may also guide the assignment

to teams. If several focus areas need a particular technology—such as
natural language query mechanisms in "Find configurations" and "Find
parts"—it s natural to assign all these focus areas to the same subteam so
they can work out the solution once and apply it everywhere needed.

By showing the structure of the system, the User Environment
Design provides a map to the implementation. Just as electricians can
use a floor plan to talk to carpenters about how to locate the holes
inside the walls so that the users can get their outlets where they want
them, so the User Environment supports a conversation between the
parts of an implementation team about how to deliver the system. It
splits up the implementation into coherent units, shows how they
relate to each other, and shows how teams focused on internals need
to coordinate with the rest of the project. (Hsia et al. [1996] suggests
another approach to sectioning a system for delivery.)

COORDINATING A PRODUCT

STRATEGY

More and more, both internal organizations and software product
companies are shipping sets of applications, each supporting a dif-
ferent aspect of the user's work. More and more, these organizations

Coordinating a product strategy 359

A reverse UED ties
existing unintegrated
systems together

are looking to tie these point solutions together, so they provide
seamless support to the work while still being packaged as separate
products. Or they're looking to support a new market or process
that they've never addressed before and will need to address with a
suite of cooperating applications. This is hard to do, especially when
starting from multiple existing applications. It's difficult to put the
essentials of each application out next to the others to see how they
could relate.

A large User Environment model can show how a set of existing
applications combine to support the user's work. Extract such a model
as a reverse User Environment Design going appli-
cation by application. It's usually not necessary to do
a full model—representing focus areas, purposes,
and flows (as in Figure 14.5) is enough to see the
structure without getting overwhelmed. Use a vali-
dation walkthrough of the resulting model to look
for all the ways your current product set fails to deliver a coherent sys-
tem work model: all the missing links between components, duplicat-
ed functions, missing functions, and inconsistencies. Then collect data
on the systems in use to see how the work hangs together in practice.
Identify changes to the User Environment model that address the
problems. Use the structural principles for a User Environment
Design to guide these changes, and use the work models to see where
the current design falls down and how to fix it. When you have a new
User Environment Design, showing how your existing suite should be
modified to provide a coherent solution, you're ready to decide how to
change the applications.

The links between each part of this new design show integration
points, where the applications need to share data or support the user's
transition from one kind of work to another. The
work objects that appear in different parts of the
User Environment Design show key points for data
integration across the different systems—these are
the objects that will need common definitions, com-
mon storage, and common UI. Each project can define a plan for
moving to the design specified by the User Environment over one or
more releases. Build a shipping User Environment Design showing
the first release for all projects, and you'll be able to keep them syn-
chronized.

The UED reveals points
of integration

360 Chapter 16 Project Planning and Strategy

Drive acquisition from the

specification in the UED

Building a systems strategy when there are no existing applica-
tions is actually easier. You can design the overall system directly, from
storyboards, like a single system with a wide scope. Then use the User
Environment Design to identify good places to partition the system
into applications. Each application should support a coherent part of
the work or role and have clean interfaces with the rest of the system.
Once you've partitioned the system, the links across partitions and
common work objects identify integration points.

IT shops can use the User Environment Design to identify not only
the parts they will build, but also the parts they want to buy from ven-

dors. The User Environment defines requirements for
the acquisition, showing what it must do, how it
must be structured, and how it must fit with the
other IT systems. IT development teams have done
this—in one case, they designed their desired solution

directly from a vision and storyboards, representing it in a User Envi-
ronment Design. Then they brought vendors in, showed them the User
Environment Design, and invited them to bid on delivering it using
their products. The vendors had to prove they could customize their
system to support the structure and functions specified in the User
Environment Design. They chose the vendor who was most successful
at showing that, with reasonable modifications, they could support
most of the design the team had specified.

The User Environment is a model that enables the project teams
to talk to each other about where system boundaries should lie, how

to create the bridges between systems necessary to

The UED helps projects

cooperate

support the work, and how to assign and reuse
implementations of common system functions.
Teams use their User Environment Designs as an
artifact to talk over in coming to an agreement on

the relationship between groups. In one case, two teams laid out their
respective User Environment Designs to support their discussions and
ended by canceling one of the projects—the diagrams had made the
overlap so obvious that they couldn't justify the existence of both.

Driving concurrent implementation

D R I V I N G C O N C U R R E N T

I M P L E M E N T A T I O N

The User Environment Design defines the structure of a part of the
overall vision—the part that is instantiated in software (and possibly
some hardware). It provides the next level of detail about the vision by
working out the system work model for the vision. Just as the vision
guides different groups in creating a single corporate response, the
User Environment Design guides different groups in delivering parts
of the system and associated processes in parallel, yet in coordination:

Planning process: The User Environment Design represents the
system work model and can be used to support planning business
processes. Once youVe worked out the coherent units of work in
focus areas, youVe also laid out coherent chunks for a business
process. Defining the process and defining the User Environment
Design go hand in hand. You can walk through the new process to see
how it s supported in the system. Out of this, identify problems with
the system or process, what training needs to be developed, and how
to introduce the new way of working to minimize disruption.

Implementation: The User Environment Design specifies behav-
ior without specifying the user interaction mechanisms. An imple-
mentation based on the User Environment Design will be free of bias
toward one UI over another. When the UI is designed, it can be
hooked to the underlying implementation so that there's a clean sepa-
ration between the UI-specific code and the code that implements
behavior—a cleanly layered implementation. The basic function of
the system is defined in the functions and objects of the focus areas.
As an additional guide to the implementation, annotate the User
Environment Design with implementation constraints—for example,
the required speed of following a link or the constraints on size or
access time of a focus area.

Documenta t ion : The User Environment Design specifies the
function of the system so documentation can start to describe what it
does. Furthermore, the specification of coherent focus areas, each with
a defined purpose in supporting the work, gives documentation writ-
ers a clear structure and motivation to communicate. The User Envi-
ronment Design reveals opportunities for additional user services,

362 Chapter 16 Project Planning and Strategy

such as help desk support, training seminars, and follow-on consult-
ing, and provides the information needed to plan them.

Test plans: The combination of storyboards and User Environ-
ment Design provides the information necessary to start test plans.
The storyboards show how the system should work; the User Envi-
ronment Design provides the formal definition of the functions. It's
straightforward to build a test plan that checks these statements of the
plan against the actual system.

Because the User Environment Design is focused on the system
work model—the system as experienced by the user—it gives a way to

structure and think about the system that keeps the

The UED ensures cross-

functional teams deliver a

coherent work practice

system work model coherent. The chunks of the User
Environment Design map to chunks that designers
need to think about and design as a unit. As such, its
a natural structure for presenting system requirements.
Implementation has its own coherence, which will

come later and which may be represented in an object model. But the
structure of an implementation is less useful for planning a customer-
centered project than the structure of the system work model. Thinking
about the system work model—the User Environment Design—ensures
that the parts of the system and the components that are delivered are
coherent from the users point of view. That's the key value of the User
Environment diagram in planning: it ensures you don't lose coherence
for the user in the turmoil of getting to the implementation.

M A R D E L L ' S S T O R Y

In the early days of WordPerfect, the founders of the company worked in the same build-
ing as their users. It wasn't a problem to stay close to their customers. But as the company
grew, developers lost that immediate connection. So the company decided to put together a
strategic effort to decide on the direction of the WordPerfect product and recover that immedi-
ate sense of the customer,

We put together a team of four or five developers, a marketing person, a documentation
writer, a UI designer, and a usability specialist. This was simply not done in the company at
the time—design was driven by engineering, with marketing getting involved later C^

Driving concurrent implementation 363

We used the complete Contextual Design process in this team to build a picture of our market
and design new product directions to address the market better.

The new designs we came up with were well received in the company, but suggested
changes beyond WordPerfect itself So we split into two teams: one focused on broad strategic
issues across the product set, and one focused on improvements to WordPerfect. This required
both teams to refocus and redefine their mission.

1 led the team focused on WordPerfect. We found that the most important parts of the
process for us were interviewing, sequence model analysis, visioning, and paper prototyping.
The strategic team continued to use the User Environment Design to show the Companys dif-
ferent products and how they related to each other. But we had the strategic direction from the
first round: we were focused on developing one product and concentrated on one focus area,
WordPerfect's editing window. We didn't need the User Environment Design for that.

As we worked with the process, we recognized that it was a backbone for understanding
the customer that could incorporate different activities. We started to use it less rigidly than we
had. We decided we weren't creative enough and started to incorporate other techniques to
expand the possibilities in our visioning, We found that our customer insight helped us make
better use of enhancement requests in our customer feedback database because we understood
more of the context of a request. We did a teardown of the current WordPerfect product and
competitors to find places for improvement. And we analyzed other kinds of products for ideas
as well.

Early on, we had a choice whether to focus on short-term improvements or long-term
new directions. Since we did have critics in the early days, we decided we had to show concrete
results. We developed specific ideas, prototyped them in paper and in code, and got them into
WordPerfect 6.1. When these features were the ones reviewers and customers picked out as
being the important innovations of the product, our credibility went way up.

Though we conceived of our ideas as integrated product directions addressing whole
themes in the customers work, we found it easiest to communicate them to developers as fea-
tures. We would select features to push out together, to address some aspect of the customers
work. We did a lot of one-on-one work with developers, showing them prototypes of a new
idea and taking them along on customer visits. (We've tried to make sure every developer goes
on at least one customer visit.) We transfer ownership of the idea to the developer—they get
credit for refining it and making it real.

WordPerfects been sold now—several times—but that was an amazing team, and the
ideas we developed are still important to the product. J

This page intentionally left blank

P A R T

.s*

Prototyping

This page intentionally left blank

Prototyping as a
Design Tool

We call this a customer-centered process, but it's been quite a few
chapters since talking to customers was the main activity (not

counting any customers on the design team). The activities covered in
the last few parts have focused on the customer—understanding how
they work as individuals and the common structure of their work,
visioning new ways for them to work, and designing those ways into a
software system. These activities keep the customer's work practice
coherent and use customer data as the final arbiter. And the consoli-
dated models and vision suggest holes in the team's knowledge of the
customer, which they fill through additional interviews. But it's now
time to get direct customer feedback again.

One of the difficulties with explaining any process is that each
part of the process must be described in turn, and the explanation
itself takes up time. The description unrolls the
process and lays it out, making it possible to see and
examine each part, but also making the process
appear more sequential than it is. In fact, the period
from the beginning of consolidation to the first pro-
totype interview should be no more than a month, even for complex
systems, and the team gathers additional data to fill gaps in their
understanding and inform the vision during this time. For smaller
projects, this period may be as short as a week or two. The point we
have now reached in the process is the norm for a design team: with a
base understanding of their customers and a target vision for their
design, they extend and iterate their design with customer feedback.
Iterating with prototypes is a design tool ensuring that the team builds
the right system, that the structure fits the user's work, that the

The goal: continuous

iteration and extension

368 Chapter 17 Prototyping as a Design Tool

The customer is the final
arbiter of the design

Demos and specifications
cant evoke work practice

detailed structure internal to a focus area works, and that the user
interface is usable and reveals the structure clearly. Teams that get
bogged down in design are usually those that have lost touch with
their customers—that aren't going back out to interview or test proto-
types on a regular basis.

The most basic attribute of a customer-centered process is that the
customers are the final arbiters of what works and what doesn't. When

you create a design, captured in a User Environment
diagram, that design is really a claim about what will
work for the user. The claim is that this particular
system simplifies the user s work, overcomes pain, or
otherwise improves their work practice. So, how do

we test this claim? How do we find out where the design falls short and
how to improve it? How do we communicate the design to users in a
form that they can respond to—in a form that helps people see the
consequences of different design decisions and react to them clearly?

THE DIFFICULTY OF

COMMUNICATING A DESIGN

Most of the approaches commonly used to communicate a new
design downplay the difficulty of communicating a design. Think

about it—it's a conceptual nightmare. Consider pre-
senting a demo of the proposed new system to
potential customers in a conference room: they must
view the products user interface, understand from
the interface and the verbal description what the

product does and how it is structured, apply that implicit structure to
their own work practice (which is also unarticulated, as we established
in Chapter 2), envision how their work practice will be restructured in
the presence of the new system, imagine themselves living in this new
way, and decide whether they like it. Then, if they don't, they have to
imagine some better way to work, transform it into implications for
the design, and express those implications clearly to the designers. The
task is overwhelming. Its no wonder most people complain about an
icon that confuses them, comment on the color, and ask about one or
two key features they care about.

The difficulty of communicating a design 369

Requirements specifications fare no better. Most are text; most
break the system down into categories that relate to the system, not the
user (all reliability requirements together, for exam-

The challenge:
communicate the
experience that a new
system will offer

pie). Even when the first level of organization is by
UI component, their textual and list-based nature
tends to present features in isolation. Its hard even
for designers to see how a feature relates to other
parts of the design; internal users reading the require-
ments for sign-off find it even harder. Requirements
specifications are less approachable than a demo and make it no easier
to imagine the impact that the proposed system will have on users'
work. They may have their place in specifying exactly what's in the
system, but they aren't a good way to communicate a design.

Talking to the customers with models has a similar set of draw-
backs. Process models or object models introduce a new language,
which must be learned and understood by the users
if they are to participate in the discussion at all. The
models represent either facts about their work or the
new system. But their work is unarticulated, and the
models represent it in a strange and unfamiliar lan-
guage that offers no touchstones to their experience.
In Contextual Design, we don't even try to talk to customers with our
work models, unless we're building systems for an internal business
partner, and they have an interest in representing their own work
practice explicitly. Then the work models become a tool for the whole
department to think about how they work and maintain an ongoing
conversation about how they might improve it. When customers
think models are a tool for them to manage their business, they can
learn to use them in the way that designers use them; otherwise it's
too hard for them to see how they map to reality.

Other forms of communication such as use cases and scenarios
attempt to communicate more of the context of use. These methods
tell stories of how people will work in the new system, so they com-
municate better than a model or specification. However, each scenario
can only tell one story out of the many the system must support. And
they all suffer from the same basic drawback: most customers have
only an unarticulated knowledge of their own work and cannot check
a proposed design against their own experience unaided. They can
react to such a story at the level of "I hate that" or "I love that," so

Models introduce a new
language for customers
to translate

370 Chapter 17 Prototyping as a Design Tool

Scenarios test the
customer's response to
the story

scenarios can help test the marketing pitch. They'll help answer the
question, "What matters to the customer?" but not "How should the
system be structured for them?" To provide that level of feedback, cus-
tomers need not just an artifact but an event, a process that will allow
them to live out their own work in the new system and articulate the
issues they identify.1 Without such a process, it doesn't matter how
many signatures are on the requirements document—there's no guar-
antee that the specified system will solve any real problems.

INCLUDING CUSTOMERS IN THE

DESIGN PROCESS

The problem for this point in the design process is to get feedback
from customers on the detailed structure of the proposed system—on

whether the system work model fits. Getting good
feedback from customers is made more complicated
because we don't just want "yes" or "no" answers. We
want to explore possibilities and create new alterna-
tives. In fact, we want to co-design the system with
the users. In Part 1, the question was how to make

The challenge: make
customers strong
co-designers

the customers the best masters of apprentices possible; now the ques-
tion is how to make them the best co-designers. We'll draw heavily on
the same principles that drove Contextual Inquiry for the answer.

The team's design needs testing with customers who haven't been
members of the team. The obstacles to making these customers co-

designers are real and have to be faced head-on: First,
no one articulates their own work practice as an ordi-
nary thing. It would be nice if the users could give
three concrete reasons why a design should be
changed; usually they can only say that the design
just feels wrong. The design process needs to create a

way of interacting that helps them articulate the issues. Second, cus-
tomers have not spent time studying all the users of the proposed sys-
tem. (Even when customers are on the team, we interview them and
follow them around to help them articulate how they work.) What this

1 This is, of course, the core insight of Participatory Design (PD) practice, and much
of PD research is looking for better ways to make "living out the work" more real.

Using paper prototypes to drive design 371

means is that any customer testing a prototype can only respond to it
from their own point of view. Third, customers aren't technologists—
they don't know the range of possibilities that technology could sup-
port. They may be either unrealistic or excessively cautious as a result.
And they don't know what it takes to make a design hang together.
And why should they, after all? Its their job to do their job, not design
systems. (For a discussion of these issues and a range of techniques for
overcoming them, see Wixon and Ramey [1996].)

And yet it s absolutely critical that these customers, immersed and
steeped in their own work, be made a powerful partner with the design
team, so they have real influence over the design. Its the customers
who will have to live with the new system. If it's an internal system,
they have a right to say how the work they do will change. If it's a
commercial product, it won't be bought if it doesn't meet people's real
needs. And unless it works well for customers, both internal and com-
mercial systems will fail. So the challenge for design is to include them
in the process to iterate, refine, and extend the initial design concept
put together by the team.

The starting point is an initial design concept. Any prototyping
process starts from an initial prototype, which designer and user refine.
It's always easier to renovate an existing design than to
start from a totally blank slate. But because prototyp-
ing is iterative, it's hard to make fundamental changes
to the initial concept, so you want to be sure the first
cut addresses the right issues. It's also easier to renovate
if you're starting with something reasonably close to
what you want. Parts 1-5 were about how to get to a good starting
point—all the effort that went into understanding the customer's work
and needs ensures that your initial design is addressing the right problems
and has a reasonable structure. Now, we need to get the details right.

U S I N G P A P E R P R O T O T Y P E S T O

D R I V E D E S I G N

In Contextual Design, we borrow the idea of rough mock-ups from
Participatory Design by introducing very rough prototypes in paper to
start the co-designing with users. The goal of the prototype is not to

A prototype defines limits

on what will be

co-designed

372 Chapter 17 Prototyping as a Design Tool

provide a demo; prototypes are a prop in a contextual interview,
enabling the user to play out the experience of living with the new

system. By acting out their real work in the proto-

Put the customer's real
data in the prototype

Let the customer do real
work in the paper system

Paper invites conversation
about structure

type, customers can make their unarticulated knowl-
edge explicit. Fleshing out the prototype with the
customers' own data and work situations gives them
the touchstones they need to put them in the experi-

ence of doing the work. And their interaction with the designer/inter-
viewer lets them explore different technical possibilities. The designer
knows technology and provides options, which the user considers,
matches to their experience of the moment, and discusses why one
alternative fits and another doesn't. It's another application of Contex-
tual Inquiry—using the prototype in the real work context keeps the
discussion grounded, the partnership leads to co-design, together cus-
tomer and designer interpret work issues, and the prototype gives
them focus.

Prototypes act as a language for communicating between user and
designer. Instead of introducing a new language, a prototype builds on

users' own experience using computers. A prototype
enables them to interact with the proposed system as
they would with any system and to respond in a lan-
guage that is immediately relevant to them. aI think
this should happen when I click here? they say,

unaware that they have just redesigned a focus area on the User Envi-
ronment Design—but the designer can tell because they can see how
the comment relates to structure and can investigate the issue if it chal-
lenges the design.

To look at structure, the first prototypes are always paper. Paper is
eminently practical and meets the primary need: it makes it possible

to express the structure of the system and makes it
hard to overfocus on user interface detail. When a
window is drawn by hand, it's pretty clear that icon
design, precise layout, and fancy direct manipula-
tion are not the important points. When users inter-

act with paper, they aren't distracted by fancy user interfaces; they
have to focus on structure. Even house architects, who aren't con-
strained by writing code, prefer to communicate their first ideas to
clients as sketches rather than finished drawings. (See "Readings and
Resources" for a range of approaches to paper prototyping.)

Using paper prototypes to drive design 373

P R O T O T Y P I N G A N D U S A B I L I T Y T E S T S

The goals of prototyping in Contextual Design are very different from the goals of a tra-
ditional usability test, and the two techniques complement each other. Usability tests typically
seek to measure users' performance on set tasks to ensure they can be done reasonably efficient-
ly. The techniques are different because the goals are different and the kind of information
being elicited is different- Usability tests tune a user interface at the tail end of design, to clean
up any rough edges or unnecessary difficulty in understanding or interacting with the inter-
face. Its not a goal of traditional usability tests to discover a better system structure or to dis-
cover that this isn't an important task at all. In fact, these issues get in the way—usability pro-
fessionals are constantly frustrated at being asked to fix major structural problems through
last-minute Band-Aids. By the tail end of design, it's simply too late to decide that your system
addresses the wrong problem. Recognizing this, usability professionals are moving to be
involved earlier in the life cycle and are using more contextual techniques in which the user
does their own work task. The more they do this, the more they get involved in the design of
the whole system, not just the final tailoring. U

The very nature of a paper prototype invites change. When the
user gets to a window in the prototype and says, "But now I need to
do this," it's easy to add the function right on the
window. It's easy to invite users into a discussion of
what they need, why they need it, and which of sev-
eral alternatives would better meet their need. It's
easy to move into co-design of the system. The user

Hand-drawn paper
prototypes invite change

is discussing his or her own work, in the context of doing it, and
manipulating the system interfaces that will help to do it. A running
prototype couldn't be changed immediately to track the conversation.
Interviewer and user would have to talk about design alternatives with
no support, or by sketching them—on paper.

We've discussed the advantages of understanding work for decid-
ing what to build, but there's a whole layer of detailed requirements
that users simply can't communicate except when they're working
with an actual design. It's natural to develop require-
ments in layers, just as an architect works out the
overall layout of the house before deciding where
the closets go. The vision was the first layer of
design, defining the overall corporate response. We
worked out the details of the vision in storyboards,

Rough prototypes focus
detailed requirements
gathering

374 Chapter 17 Prototyping as a Design Tool

he td Sort

iLCilt uu.u rXcrui $y

F I G U R E 17 .1 A proposed UI for ordering supplies.

Prototypes make it possible
to test work practice that
doesn't yet exist

but we needed additional data (the consolidated sequences and issues
from the models) to build them. The User Environment Design
pulled together the parts of the system into a single diagram to work
out their relationships. But now we need an additional level of
detailed customer data to work out exactly what will happen in each
focus area.

A first level of requirement might be, "The ordering system should
make it possible to batch orders from several people." But a complete

specification would give intricate detail: "Orders from
several people will be organized in rows, grouped by
person or item ordered, with who requested the item,
the item description, and price visible on the screen,
and movement from order to order will be support-
ed by the TAB key. . ." (Figure 17.1). Ignoring the

difficulty of communicating this much detail precisely, how are the
designers to get these details right? How can they determine exactly
what information the user needs to see? If it's a new system (the cus-
tomers currently don't batch orders from different people), they can't
use existing work practice as a guide. Customers can't tell them what

Using paper prototypes to drive design 375

they will need in a system that they haven't experienced. The only way
to get this level of specification right is to work it out in the context of
the specific design. Prototyping in paper lets the team complete the
detailed design without committing anything to code.

Then, once designer and user are working together on a new sys-
tem prototype, it becomes possible to take the next step in design.
When a system is entirely new, putting it in place
will change the user's world in unpredictable ways.
Not until users have worked with the system and
understood the possibilities it creates can they start
to restructure their world around it. Movies are not
filmed theater—but until people had experience
with the new medium, they could not see how to move beyond the-
ater. Word processing is not typing—but the first editor was jokingly
called the "Expensive Typewriter" by its creators because they weren't
sure they had created anything really new. Not until word processors
were part of the workplace could anyone see how profoundly they
would change work and redefine the role of professionals and secre-
taries along the way Until spreadsheets were in use, no one could tell
that they would become an important way to present data and that
formatting would matter. As people take advantage of new systems,
they change their work practice in ways the designers may not foresee.
If designers can find out about this emergent work practice before the
design is complete, they can support it directly Lotus 1-2-3 became
successful by recognizing the emergent work practice that VisiCalc
did not support. Recognize the emergent work practice yourself,
before your competition does, and you can leapfrog a whole genera-
tion of products. Interviews with paper prototypes are the first step
toward seeing these issues.

The first round of interviews reveals the basic structure of work
and needs for the new system. The new system is designed in response
to the current work structure. But working through
a prototype of the new system, pretending to do real
work, and discussing the interaction of the system
with the work reveals issues that would otherwise
remain invisible. Together, user and designer can
explore how the system will impact the work and how work is likely
to change in the future as a result. There's a chance of designing the
system to account for these changes.

Prototypes reveal future
possibilities resulting from
the new system

The trick: using real work
pushes co-design

376 Chapter 17 Prototyping as a Design Tool

P R O T O T Y P I N G A S A

C O M M U N I C A T I O N TOOL

In Chapters 2 and 5, we discussed the need to build a partnership
with the customer organization, especially for IT departments. What's
been missing until now has been concrete activities that build day-to-
day communication and trust. What's needed is not just a formal
agreement on deliverables but the sense among the customers that the
development organization understands their problems and will pro-
duce useful software.

The continual involvement of users is an important way to
achieve this trust. Prototype interviews excite and interest users—they

can see progress, they can talk directly to developers,

Co-design over a prototype
builds trust with

customers

Rapid iteration mediates
arguments within the
design team

and they can see how their responses shape the
design. It's immediately clear that the design team is
listening. This can cause its own problems—one
team had to ensure everyone in their customer
department was interviewed to handle the interest

and excitement—but surely these are better problems to have than
mistrust and contempt. The interest and involvement generated by
the sessions leads to easier acceptance and adoption of the system
when it comes time to roll it out. And for commercial products, it's a
good way to find out if a design works and if it generates excitement
among the people who try it. It's also a great sales point for commer-
cial product developers to work out the design with their users—after
one set of interviews, one customer had their internal company
newsletter do a piece on how well their vendor was listening. Another
customer, when asked, said they would pay three times the price mar-
keting thought was possible because they understood the potential
impact on work practice.

The prototyping process not only brings the users into the design
process, but it changes the design process itself. The customers,

remember, are the final arbiters in a customer-
centered process. But that's not an achievable goal
unless bringing them into the process is fast and easy.
We regularly mock up a design alternative in paper
on one day and test it with users on the next. We
have results and are ready to rethink the design within

Prototyping as a communication tool 377

two days. Its possible to go through multiple iterations, trying out
many different ideas, in the course of a week. There's no time for peo-
ple to get overly invested in one design alternative and no reason to
argue for any length of time over two alternatives. It's almost always
faster to take the alternatives to users and try them out. Most argu-
ments in a design team come about because the team really doesn't
have the data to make an informed decision. Paper prototyping re-
duces the cost of getting data so low that the team can depend on
having it and makes getting data so fast that no one has time to get
overly invested in a feature. (Moll-Carrillo et al. [1995] and Lun-
dell and Anderson [1995] offer case histories of this kind of rapid
iteration.)

This page intentionally left blank

From Structure to
User Interface

A paper prototype tests the structure captured in a User Environ-
ment Design by talking to users through the medium of a user

interface. Because the initial intent of the prototype is to test struc-
ture, the UI should be a fair representation of the underlying struc-
ture. Making the translation from User Environment Design to user
interface is a necessary part of the prototyping process.

We'll discuss how to map from User Environment Design to UI in
this chapter, but we will not try to cover how to design a good UI.
Creating a good UI is its own design problem and is covered extensive-
ly in other books. What we care about is that the interface presents the
User Environment Design cleanly, so we don't fragment the work in
building the UI and we provide a fair test of the structure. The UI
should hang together as an interface, conform to any guidelines for the
UI platform, and be a fairly straightforward translation of the User
Environment Design. The team may choose to put some extra effort
into designing the interface, so they can test some of their UI ideas as
well. But a clean presentation of the structure is the first priority.

U S I N G T H E U S E R E N V I R O N M E N T

D E S I G N T O D R I V E T H E U I

The User Environment Design is the user interface designers specifi-
cation. It tells the UI designer how to organize the interface, what
functions should be available, and where to put the functions. But it
leaves open how the interface should work—the underlying user

18

380 Chapter 18 From Structure to User Interface

The UED is the UI
designer's specification

interface paradigm, the interaction style, and the appearance. When
the first prototypes are built, the User Environment Design may also

leave open low-level design details, such as exact
content and order of fields in a list. It's best to work
out these details directly with the user in front of a
prototype. UI designers use the User Environment
Design as a guide and also draw on the work models

to inform their design. The affinity collects issues, including issues
with using tools; the physical model shows what's placed where and
suggests what should be most accessible and apparent in the UI; and
artifact models show the conceptual structure and intents that should
be reflected (but not slavishly followed) in the UI. Storyboards not
only collect UI ideas for different system components, but give UI
designers a sequence of work steps to test their design against.

Like any good specification, the User Environment Design does
not determine how to design the user interface. It leaves even the
choice of technology open, whether command line, character-cell,
windows and mice, or something else. The hardware platform, operat-
ing system, and UI technology determine UI style; the User Environ-
ment Design defines the structure and function to implement. It's up
to the UI designer to make creative use of the technology to get the
UI out of the user's way so they can focus on work, not the tool. Then
the prototyping interview will test not only the system structure but
the first level of the UI, too.

M A P P I N G TO A W I N D O W I N G UI

Here's an example of how a User Environment Design might turn
into a user interface. The "Select base configuration" focus area in Fig-
ure 18.1 specifies that the user should be able to see, sort, and choose
from a list of configurations and get details on a configuration in the
list. It also says there should be a close link to the "Find configura-
tion" focus area, which allows for creating a new list of configurations
that match a specified criteria. This pair of focus areas could be real-
ized on any base platform, but Figure 18.2 shows a windowing imple-
mentation, and Table 18.1 shows the appropriate mapping.

Every user interface technology offers a unique set of advantages and
drawbacks. One of the challenges of UI design is to overcome the partic-
ular drawbacks of a platform. Windowing interfaces offer the possibility

Using the User Environment Design to drive the UI 381

2. Select base configuration
Choose the starting point to
modify

Functions
o See recent configurations
• Show configuration detail

Links
> Choose configuration
> Modify working configuration
»Find configuration

F I G U R E 18.1 Part of the User Environment Design supporting configuration
management, first introduced in Chapter 16.

b d o i T Pitsc UVULJLUULL^ L

^

c LLCr U ^ U u V i ' ^ t L ^ L ^ l u C 1

L^i|uuu;£vi ^t.itc IrcAltoii t k t c ^ ^tst LIUUCX j \ | btitiS

ID

F I G U R E 1 8 . 2 A windowing implementation of the configuration management
User Environment.

of great transparency because all options and changes are visible at
once—but some aspects of the interface are cumbersome. The design in
Figure 18.2 goes to some effort to make it as easy as possible to select a

382 Chapter 18 From Structure to User Interface

U S E R E N V I R O N M E N T C O M P O N E N T

Select base configuration (focus area)

View recent configurations (automatic
function)

Enter and choose configuration name
(link)

Choose configuration (link)

Sort by name or date (function)

Find configuration (double link)

W I N D O W I N G E Q U I V A L E N T

The "Select Base Configuration" window
is devoted to displaying a list of
configurations, sorting, and choosing
from them.

The "Select Base Configuration" window
comes up with the most recent
configurations listed by default.

Text entry field in the "Select Base
Configuration" window. Input focus is
given to this field when the window first
comes up. If the user types a name and
presses RETURN, the system will select the
configuration (if it exists) and close the
window. This supports choosing a
configuration by name quickly

Double-clicking on a configuration in
the list chooses the configuration and
closes the window.

Clicking on the Configuration Name or
Creation Date column header changes
the sort order to name or date,
respectively A small triangle at the right
end of the column headers indicates
forward or reverse sort order; clicking on
it toggles to the opposite order.

The Query button on the window brings
up a floating window that allows the user
to enter criteria for matching
configurations. As new criteria are
entered, the list in the "Select Base
Configuration" window changes in real
time to reflect the matching
configurations.

T A B L E 1 8 . 1 Mapping to a windowing UI.

Every UI technology has
its characteristic strengths
and weaknesses

single configuration by name. The user clicks on the button that brings
up a dialog box, types the name, and hits RETURN without even having

to wait for the window to draw on the screen, in a
good implementation. Nevertheless, the nature of a
windows interface is that a window has to come up to
present the text entry field, and anytime a windowing
UI does this, it will disrupt work. (Some products

Using the User Environment Design to drive the UI 383

find creative ways around the problem—MS Word 5 on the Mac would
steal part of the horizontal scroll bar for text entry. This bent the UI
style rules, but minimized disruption to the work flow.)

Designing the UI introduces new functions that are specific to
manipulating the UI and so dont appear on the User Environment
Design. Selecting a configuration and sorting the list are required by
the User Environment Design and are handled in the UI by the stan-
dard mechanisms of double-clicking to select and (the somewhat less
standard) clicking on column heads to specify sort order. But "scroll
up," "scroll down/' and "select" aren't User Environment functions at
all—they are just ways of manipulating the UI and are not fundamen-
tal to the work the system supports. They should be designed to stay
out of the user's way.

Most focus areas end up being windows in a windowing UI, but
that's not the only way to do it. The User Environment Design only
specifies that the function in a focus area be pre-
sented as a coherent chunk: that can be done by
putting the function in a pane or segmenting a larg-
er window in some other way. Some successful
products (Claris Emailer or M.Y.O.B.) make the
most important focus areas tabs in a tabbed dialog
box and put secondary focus areas in windows accessible from the
different tabs (Figure 18.3). Tabs in dialog boxes are problematic
because each tab creates its own focus area whether you want it to or
not, but when a tab is intended to act like a focus area, the interface
can work well.

M A P P I N G TO A C O M M A N D - L I N E UI

We presented the mapping to the windowing interface first because
it's most direct. But the same User Environment Design can be imple-
mented in other user interface styles. As an example of a very different
style, Figure 18.4 shows how a command-line interface might repre-
sent the same User Environment Design.

This mapping of a User Environment Design to a command line
shows another way to deliver the basic intent of the specification
(Table 18.2). Here, the "Select base configuration" focus area is a sub-
system. By relisting the configurations automatically after each com-
mand that affects the current list, the design ensures that the user

A focus area defines a
set of functions to be
kept together

384 Chapter 18 From Structure to User Interface

Browser

In Box

=g= Add

Out Box Filing Cabinet Address Book

i
. 1 . .»Mi' " » uj \\\ , J T | I . ! .

Subject To r-

| 0 in list, 0 selected 1 \ < ■

^

ej

InConteHt Enterprises, Inc. 1/28/97

General
Ledger

Purchases ► Payroll ► Inventory
Card
File

Write
Check3

Ji
Print

Checks

Reconcile
Accounts]

J r

Transaction
Journal

Make
a

Deposit

M.Y.O.B. Analust

F I G U R E 1 8 . 3 Claris Emailer and M.Y.O.B., two products that use tabs or tab-
like buttons to organize access to their primary focus areas.

always knows what is going on and fills the requirement of the "see
current list" automatic function. But its more cumbersome than the
windowing implementation.

Using the User Environment Design to drive the UI

FcM> SELEC T
1. CONFIG 1
2 . CONFIG 2
3. CONFIG 3

BASE CONFIGURATION
8-
7-
6-

-AUG-
-AUG-
-AUG-

-9 6
-9 6
-9 6

SELECT CONFIGURATION>
CONFIGURATION
CM>

CONFIG2

JOHN SMIT H
JANE DOE
SAM SPENC E

SELECT 2
SELECTED

F I G U R E 1 8 . 4 A command-line implementation of the configuration manage-
ment User Environment.

U S E R E N V I R O N M E N T C O M P O N E N T

Select base configuration (focus area)

View recent configurations (automatic
function)

Enter and choose configuration name
(link)

C O M M A N D - L I N E E Q U I V A L E N T

SELECT EASE CONFIGURATION p u t s USer
into a mode that allows searching and
specifying a base configuration.

SELECT BASE CONFIGURATION responds by
listing the 10 most recent configurations
immediately. This fulfills the
requirements for an automatic function,
allowing the user to select from the list
immediately.

SELECT BASE CONFIGURATION <NAME>
identifies the desired configuration by
name. The intent of this function as
defined by the User Environment Design
is to make it as fast as possible to choose
a configuration when the name is
known. Command lines excel at this
immediate action to function.

SELECT <N> and SELECT <NAME> let the
user choose a configuration from the
current list either by ordinal number in
the list or by name.

SORT BY [REVERSE] {NAME | DATE}
allows the user to choose a sort order for
the list, sorting in either forward or
reverse order, by name or date. The
command-line system responds by
relisting the current selected
configurations in the new order.

FIND [CONFIGURATIONS] WIT H [NAME =
<PATTERN>] . . . chooses a set of
configurations to view based on criteria

o
Mapping to a command line.

Choose configuration (link)

Sort by name or date (function)

Find configuration (double link)

TABLE 18*2

386 Chapter 18 From Structure to User Interface

U S E R E N V I R O N M E N T C O M P O N E N T

Find configuration (double link)
continued

C O M M A N D - L I N E E Q U I V A L E N T

provided by the user. Each query
command is prefaced by FIND and puts
the user back into the SELECT BASE
CONFIGURATION subsystem, listing the
newly selected configurations
automatically. Command lines don't
support context well, but this scheme
gives the user a way to access the query
function quickly without leaving the
focus area, which is the basic intent of a
double link.

T A B L E 1 8 . 2 continued

The UI introduces

additional functions to

manage the interface

The two forms of the "select base configuration" function—with
and without a configuration name—provide an economical way to

select a specific configuration quickly or begin a
search for the right configuration. This overloading
of the command is appropriate to command-line
interfaces, and the possibility of such overloading is
one reason why command lines can be terse and
direct. Windows interfaces have no equivalent—we

saw above how the windowing design had to separate the two func-
tions and pop up a text entry window to do the same thing.

The command line is at a disadvantage in dealing with the list of
configurations. You can't point and click in a command line, so how
will selection be supported? This design numbers the list and allows
choosing both by number (for brevity) and by name (to support
recall). These are appropriate options for a command-line user inter-
face style. They don't appear on the User Environment Design be-
cause they address issues unique to this UI design. Similarly, the user
interface designer will have to decide what to do when the list is too
long (over 10 or so). Should the list just scroll? Should there be anoth-
er layer of function to display the list a screenful at a time? These are
questions about working with the constraints of this particular user
interface and are decided at this level.

Using the User Environment Design to drive the UI 387

Different styles for
presenting functions
support different usage

M A P P I N G TO UI C O N T R O L S
When mapping function in the User Environment Design to controls
in a windowing UI, there remains the question of how to decide what
kind of control to use. The different options for
making a function available in a windowing user
interface are not equivalent. Functions can be
implemented through a pull-down menu, a button,
direct manipulation, or a command key. Which
mechanism will work best for a particular function
depends on the nature of the function with respect to the work of the
focus area. Who the user is, what role they are playing, and what
influences them in the cultural model will all affect what makes an
acceptable influence. Doctors and medical technicians both update
patient records—but doctors are more pressed for time and will toler-
ate less complexity from their computer systems. The UI for a system
supporting both would have to work for both user populations. It's up
to the UI designer to understand the work context and map the func-
tion in a style that supports the intent of the focus area and fits with
the people who will use it. UI designers have a number of options for
presenting a function, none mutually exclusive. Some distinctions be-
tween ways of presenting functions can be useful:

In your face: A button, whether on a toolbar or directly on a win-
dow, is in your face. It's always present and it always takes up screen
real estate (unless you allow the user to redefine the interface by
reconfiguring toolbars). They're easy to find because they give a direct
visual clue to their existence. In Chapter 15, we discussed core func-
tions, the functions that are central to the work of a focus area. Its
often a good idea to implement core functions with mechanisms that
put the function in the user s face. Making these functions easy to find
and access is worth the drawback of using up screen real estate on
them. Also look at the physical model to see what users chose to put
in front of them—those things represent the concerns users care
about, so functions related to those concerns are good candidates for
putting in the user s face.

In your fingers: A command key is the fastest and least distract-
ing way to invoke a function for expert users. Even multiple keys can
be struck like one if they're familiar enough. Moving the hand to the

Chapter 18 From Structure to User Interface

mouse, positioning it over the right button, clicking, and returning
the hand to the keyboard is always a greater distraction than typing
CTRL-B. But a command key is entirely invisible; all but the most
common will be used only by power users. When mapping critical
functions, frequent functions, or functions that are available across
many focus areas, command keys are appropriate. They're also appro-
priate when the function needs to fit seamlessly into the work flow—
when users are concentrating on the work in front of them and want
to invoke the function without thinking about it. CTRL-B for "Bold" is
a great command key—it's consistent across every tool that edits text
and it doesn't interrupt the user's thought.

Direct manipulation: Direct manipulation is as invisible as a
command key. But direct manipulation functions suggest themselves
through the physical metaphor of a windowing user interface. Users
think they can drag around icons on the desktop, so it's natural to
move files by dragging them between folders. The physical and artifact
models will suggest what things are moved around, their structure, and
operations on them. Direct manipulation works well when it maps
obviously to the physical metaphor and it provides a convenient way to
access the function. The work objects in each focus area are natural
candidates for manipulable objects in the interface; functions that
interact with them are good candidates for direct manipulation.

Available when needed: Pull-down menus make a whole addi-
tional range of function available. This function is neither totally
available, like the in-your-face function, nor is it totally hidden. It's
like the artifacts on the physical model that are moved away behind
the user. It's a reasonable choice for the function you need for com-
pleteness, but which isn't core to the work of the focus area. The work
models—especially models of workplaces and artifacts—will suggest
what can be put out of the way or out of sight. Functions related to
these or similar objects can be put out of the way on menus. In the
User Environment Design, functions that address the same intent
within a focus area are clustered together—it makes sense to put them
on the same toolbar or same pull-down menu.

In a dialog: Finally, some functions need additional information
from the user, so the UI designer has to invent a way to get it. The easi-
est way is usually through a dialog box. It's safe to assume that a dialog
box that does not represent a focus area always disrupts work to some
degree—look at how inserting a page break from the "Break . . . " dialog

A process to design the UI 389

box in MS Word 6 disrupts the flow of work in a way that having
"Page Break" directly on the menu did not. Once a dialog box has too
many controls, it creates the experience of a new
focus area by sheer complexity. Experienced users
may learn to ignore irrelevant parts of the box—as
90% of users ignore 90% of the print dialog box
99% of the time—but others will have to stop and
parse the information in the box. That makes dealing
with the box its own type of work and therefore its own focus area.
Taking another example from Word, look at the difference between
creating a table from the toolbar button and creating a table from the
table dialog box. The button fits directly into the flow of editing—it's
appropriate when the user is just inserting a table as part of the flow of
editing. The separate dialog requires that you read, understand, and
manipulate a new interface. It's appropriate when the user is thinking
about the structure and appearance of the table as a design problem.
For the cleanest mapping, try to keep all functions in the focus areas
window. Avoid dialog boxes that don't map to focus areas.

A P R O C E S S T O D E S I G N T H E U I

Getting the UI right is an important part of the design process. Good
user interface designers experience the User Environment Design as
giving them freedom. Rather than being asked to reinvent the product
in the user interface, they are given a clear specification for what goes
into the design. The specification is full of hints and implications—
automatic functions, potential focus areas, and double links all suggest
user interface options that will implement the intent of the designers.
But the specification does not overspecify the user interface. It leaves a
broad field open for creativity. Even if the UI designer is on the team,
separating the User Environment Design allows them to concentrate
on structure, then focus on UI as its own task.

Whatever approach is used to design the UI, it builds on the infor-
mation in the User Environment Design and work models. A few prin-
ciples help UI design fit it into the overall Contextual Design process.

Follow a defined process: It s possible to approach the UI design
task much like visioning—sketch several alternative approaches to the

Good UI design lets the
user focus on an activity
in a single place

Chapter 18 From Structure to User Interface

UI, evaluate them with positives and negatives, and synthesize a single
UI theme from the best of the alternatives. Just as the vision captured
a single, comprehensive response to the work situation, a UI vision
captures a unified response to the User Environment Design. It ties
the system together at the UI level. However you approach UI design,
take advantage of the affinity and models—review them for issues and
concepts to inform the UI.

Base your design on the work models: The consolidated work
models help guide UI design. The flow model shows the different
roles and individuals that use the system; consistency and common
mechanisms are most important for those parts of the system that
support the same role and individuals. The artifact models show how
people break up the work into chunks—design the UI to fit those
chunks to make it more comprehensible. Sequences show how one
step and task follows on another—running them through the UI
reveals problems in interacting with the system. The cultural model
shows how the users think of themselves—use color, packaging, and
style to match your users' self-image. The vision shows how the sys-
tem hangs together, and the storyboards walk through specific
sequences of use. The UI designer can take advantage of them all.

Keep conversations separate: Remember that every new step in a
design process sheds light and uncovers flaws in the previous step. As
soon as the UI designers try to make a focus area real in an interface
that works, they'll discover missing functions and structures that sim-
ply can't be made to work. At this point, separating conversations
becomes critical: knowing whether the point under discussion hinges
on UI, system work model, or customers' work practice and sticking to
it makes all the difference to resolving disagreements amicably. By this
point in the design process, a good Contextual Design team will auto-
matically identify the conversation they are in and go stand in front of
that model.

When working on the UI reveals a problem in the User Environ-
ment Design, the team decides whether to go back and fix it or not. If
it's just a question of a missing function, and adding the function in no
way changes the purpose or scope of the focus area, it's easy to note it
and go on. But you may find that the basic structure of the User Envi-
ronment Design doesn't work. You may find that adding the function
changes the scope of the focus area beyond its current definition. In
these cases it's best to go back and rethink the User Environment

A process to design the UI 391

Design. Use the physical props to help you here. Your sketch of the
user interface holds the user interface design conversation, and your
User Environment model holds that conversation.
Move between the two physically as you discuss the
different issues, and you'll focus your team better on
the question at hand. (Constantine [1994b] discusses
how to support movement between phases in the
development process.)

The User Environment Design and storyboards are the primary
guide in working out the UI—the User Environment because it gives
the structure to make it real and the storyboards because they capture
alternative UI ideas and show sequential histories of use. Other mod-
els give additional guidance in working out the details of the user
interface. When it's done, the result is an interface that presents a
coherent system work model to the user and is ready to be mocked up
in paper.

Move between storyboardsy

UEDy and UI as you raise
and address issues

This page intentionally left blank

Iterating with a
Prototype

The only reason for building a paper prototype is to support the
conversation between user and designer about how to modify the

proposed system to fit the user's work better. To do this well, the pro-
totype must be easy to build, represent the user interface well enough
to communicate it to a user, and be easy to modify in the field to sup-
port the design conversation. The process in Contextual Design is to
validate the User Environment Design to ensure it's consistent; design
a UI that represents the User Environment and mock it up in paper;
interview customers using the paper mock-up in their own work con-
text; interpret those interviews in the design team; make changes to
User Environment Design and UI to respond to the issues; and repeat
until the design stabilizes.

The original work on low-fidelity mock-ups was done at Aarhus
University (Ehn and Kyng 1991). Since then, many others have mod-
ified the basic concepts to software (Müller 1991). Our approach
builds on the concept of a low-fidelity prototype, but puts it in the
context of a contextual interview in which the prototype can be tried
out, discussed, and modified in partnership with the user.

B U I L D I N G A P A P E R P R O T O T Y P E

Ease of building is a primary requirement of paper prototypes.
Remember that part of the goal is to make it easy to try out design
options with users; if it s too hard to build the prototype, people will
be less willing to use them as design tools. Off-the-shelf stationery

19

Chapter 19 Iterating with a Prototype

b-CicxX ÏUS.C ioiUi]My(UOil

^llc uAiL

uCLcr CO/UÙILO;IUI\I ^i/itc;

F I G U R E 1 9 . 1 A paper prototype for the configuration management windowing
UL The column headers and triangle to set sort order are on separate pieces of paper
to suggest that they are clickable. The real UI might make them three-dimensional.
The blank list will be filled in during the interview with configurations the user
works with.

supplies, especially Post-its in all their varieties, are the basic compo-
nents of a paper prototype (Figure 19.1).

The key for a successful prototype is to put everything that might
have to move during the interview on its own Post-it. This includes
pull-down menus, buttons, and the objects of a direct manipulation
interface. The interviewer will write in the content of the interface
with the user's own data during the interview, so any example content
should be on a removable sheet. The interviewer will take extra sheets
to write the new contact on.

If the system mixes hardware and software, use other kinds of props
in addition to the paper mock-up. Pens make good bar code scanners,
pen boxes make good PDAs, and stationery boxes make good laptops.

Building a paper prototype 395

A good paper prototype is

clean but looks like it

can be changed

Post-its on the laptop and PDA boxes represent their interfaces. Use
these whenever the form factor of the physical device matters.

The final paper prototype represents the structure and the behav-
ior of the proposed user interface. It's rough and handwritten, but leg-
ible—the user needs to be able to read it. The proto-
type should cover the whole system. Focus areas that
aren't worked out yet are a blank Post-it with a title
bar in the prototype. This gives enough structure to
discuss the place with the user should it be wanted.
Organize the paper so that all the parts for a win-
dow are together, with extra parts that appear on demand on a sepa-
rate sheet. Put the windows in order of expected use, and you're ready
for an interview.

B U I L D I N G A P A P E R P R O T O T Y P E

The screen: Use a 9 X 12-inch sheet of card stock as the background to represent the
screen. This gives you a slightly rigid base to the prototype, which is useful when manipulating
the parts in the field. The slightly larger size gives you more flexibility in laying out a complex
prototype.

Windows: Use an H[li x 11-inch sheet of paper or the largest size Post-it as a window.
The larger size lets you lay out a more complex window but also occupies most of your card
stock screen (much as real windows do). In the interview, watch for issues caused by multiple
overlapping windows.

Decorate windows with a title bar and any permanent contents. Draw a menu bar and
write in the names of pull-down menus. Draw scroll bars if any.

Pull-down menus: The name of the pull-down menu goes on the window because its
always visible. The contents of the menu go on a 2 X 3-inch Post-it. Write the name of the
pull-down menu at the top. In the interview, keep the menu to one side, and put it on the
window when the user clicks on it in the menu bar to simulate pulling it down. Any pull-right
submenus go on their own Post-its—you'll pull them out when needed in the same way.

Tool palettes and button bars: If they are permanent, draw the space for them on the
window but put each tool or button icon on its own Post-it (cut these small by hand). In the
interview, you'll want to talk about what needs to go on the bar or palette, and having them on
their own Post-its makes it easier to reconfigure them. It also makes them appear more manip-
u l a t e and inviting to press.

If youVe designing a floating palette, put the whole thing on its own 2 X 3-inch Post-it,
Either draw the tools on it directly, or put them on their own small Post-its if you want to
design exactly what goes on the palette. C^

Chapter 19 Iterating with a Prototype

Radio buttons, check boxes, controls: Draw right on the window.
Dialog boxes: Use smaller-sized Post-its for these—3 X 3-inch or 3 x 5-inch. Treat them

just like windows, drawing on permanent content and using separate Post-its for things that
may change.

Window contents: For most windows, the bulk of the contents will be the user's own
data—the information she would expect to see if she were using the application in her own
work. It's okay to fill in dummy data while building the prototype to work out what the
screens will really look like, but take a blank version to the interview. When you're there, you'll
tailor it to them.

Special techniques: The more interesting your design is, the more you'll want to extend
these basic techniques to represent your design. Drag-and-drop is easy if you put the element
you want to drag on its own Post-it, so the user can pick it up and move it. If you want to rep-
resent an overlay of information—like annotations on a document—cut overhead transparen-
cy film and draw and stick Post-its on it. If you're designing a tabbed interface, use Post-it flags
to represent the tabs. Play with the medium. Anything that represents your intent and isn't too
complicated to create or use is fair game. 3

RUNNING A PROTOTYPE
INTERVIEW

A paper prototype interview is very similar to a contextual interview in
attitude, but very different logistically The mechanics of handling the
paper prototype make it a different kind of interview to run. But like a
contextual interview, the attitude is one of inquiry probing into the
reasons for the user s actions and generating a sense of shared discovery
co-interpretation, and co-design. The same principles that guide Con-
textual Inquiry guide a prototyping interview.

CONTEXT

In a contextual interview, you stay grounded by staying close to the
ongoing actions and real past events of the user's work. You can't do
real work in a paper prototype, but you can stay grounded in real
events. Either replay a real past event, or alternate between doing a
real task and replaying it in the prototype:

Running a prototype interview

User: / like this "change" concept you have. Keeping all the
parts of a logical change together is a big problem for us.

Designer: When was the last time you ran across that?

U: Just last week, when I was putting in a bug fix to our
system.

D: Let's replay that situation in the prototype. What were the
different parts of the system you had to change?

U: Welly there was the bug report; then there were two modules,
PROA. C and PROB. C; and there was my description of the
change that we're all required to do.

D: (writing furiously) Like this?

U: Right.

D: (putting the list on the prototype in the right place)
Okay, leû do it.

The designer writes new data into the prototype to show the data
associated with the real event. This keeps users interacting with the
prototype, either touching and changing it them-
selves or telling the designer how to manipulate it.
Don't let users drift into generalities—if they start
talking about what they would like in a system, pur-
sue a real story to see how the changes would play
out. As they act out the story, invent fixes to the system to support
them better. One design team working on a portable device drove
around with their user. When she bought gas, she said, "And now, I
pay for it with this thing," and she pretended to plug it into the pump.
Having the device in her hand, it was easy to invent new uses for it.

P A R T N E R S H I P

The partnership between user and designer is around co-design of the
prototype. As the user works with the prototype, both user and
designer will discover problems. When the user raises problems or
suggests different ways to do things, the designer modifies the proto-
type to represent the suggestion. The designer also gives design
options to the user by suggesting several alternative solutions to a
problem they've run into.

Follow a single case-
dont do a demo

398 Chapter 19 Iterating with a Prototype

Users are never wrong:

change the prototype

to meet their expectations

Find out why a design does

or doesnt work for the work

There will often be points where the user's expectations don't match
what the designer intended: "Oh, that change' thing lets me submit a

change proposal, right?" In such cases, always pursue
the user's interpretation first: "Right, what do you
think would happen?" Start co-designing this new
possibility immediately You're not committed to the
design that you and the user come up with, but by
exploring it you can find out what they are thinking.

You may discover a whole new issue or approach that you hadn't
thought of before. You'll take the design you work out back and inte-
grate it properly later—or at least the ideas underlying the design.
Once you've explored this other avenue and come to a natural stopping
point, you can return to the prototype you designed: "That was inter-
esting. But remember back here, when you first saw this 'change' thing?
Suppose I told you it kept the parts of a change you make together?"
This is also the right way to handle the user's design ideas. If they are
limited by their experience or skills—if everything they suggest is a
tabbed dialog box or a menu—pursue their idea until you see what
they are trying to get at. Then you can draw on your wider range of
options to come up with cleaner or more inventive solutions. In this
way, you'll see both what the user had in mind and, when you share
them, his reaction to your ideas. You'll also give the users more tech-
nology ideas that they can incorporate and apply themselves.

INTERPRETATION

When the user reacts to some aspect of the prototype or to the design-
er's ideas, the goal is to find out what they expected and why the pro-

totype or suggestion doesn't match. It's okay to dis-
cuss their ideas. It's important to understand what
they want and why, not just the specific idea they
propose (Figure 19.2).

User: This list of what's changed in this configuration isn't
useful I need to see the exact files, not just the developer's
description attached to each change.

Designer: That tells you whether to trust the change?

Running a prototype interview 399

V intc

3L.<\ UJlst
Tccvto but] | L V

LkùRC {GtfiQX

W +?i

Ma| Co/UL^LUVtU VtUOil

tr.ûito or

fW S ÎIUMS

/ i&-ic Da

TXtfe,

^TLU^9t? |Ä

9 - i i t i ^ r j - : u 'C J i . t ü C S ;

LYLU b iU . ",UL

^*^ : (Ä ' . (v;; i rï*¥rï ; ".»-«>□•-

F I G U R E 1 9 . 2 A paper prototype of the "Qualify Configuration" focus area.

U: Right. IfTrn surprised by what files theyve touched, or if
theyve touched a couple of modules that are real complex, I
know to be careful

D: So how might you fix it?

U: Well, Idont know. . . Maybe double-click to see a list of
contents?

D: That could work. Or we could give you a little triangle like
Macintosh's finder. Click the triangle and see whaù in the
configuration. Or we could add an area to see contents and
update it when you pass the mouse over a change—

U: / like that. That way I can scan up and down looking for
who changed a particular module or get a fast look at
everything that's changed. Leû do that.

400 Chapter 19 Iterating with a Prototype

Nonverbal reactions

showing that users are

overwhelmed or frustrated

reveal excessive complexity

D: You need to see exactly who changed what?

U: Oh yeah. Some of our modules are real rat's nests. If they
werent changed by the one or two people I trusty VII be real
careful of them.

In every case, you're looking to understand the structure of the
users work and how it matches the prototype, but you'll be talking in
the language of the UI. So in this example, designer and user talk about
"double-click" and the "little triangle." But the solution they settle on is
the one that matches the work. The data the designer will take home is
structural—that what matters to the user when looking at a changed
configuration is to see what changed and who changed it. The particu-
lar UI idea might work, or it might be replaced by a better way of see-
ing into a configuration. As long as the user's intent is met, the UI
designer is free to think up a better mechanism.

It's important that you keep open to the user's reaction (verbal
and nonverbal) and that you be willing to respond by changing the

prototype promptly One designer took out a proto-
type with two alternative interfaces, one of which
(her favorite) merged two focus areas in the User
Environment Design and was based on a calendar.
When that one was placed in front of the first user,
she visibly recoiled and said, "Oh no, I don't want
that—that's much too complicated." On another

project, one user was given an interface that simply didn't match what
she was trying to do. She did her best to make it fit her job, but it
wasn't until the designer created a new window (and new focus area,
though the designer didn't say so) that the prototype started to click.

Focus
As we discussed above, the User Environment Design represents the
team's claim that this system will improve the user's work practice.
The focus of a prototyping interview is to test that claim and fix the
system when it s wrong.

Keeping to this focus is hard because it's easier for people to
assimilate changes and see them as a minor adjustment than to recog-
nize a challenge to the basic structure or assumptions of the system.
It's important for the designer to be looking not for validation, but for

The structure of an interview 401

the ways in which the system fails. Taking this attitude makes it more
likely that designers will recognize a fundamental challenge.

The User Environment Design gives designers a way to listen that
also makes it easier to break existing assumptions. With the User
Environment Design behind them, designers can
tell whether a suggested change affects only the UI
or whether it's really challenging the structure of the
system. When the User Environment Design was
created and when the prototype was reviewed,
designers identified specific tests to check for during
the interview (we'll discuss this more below). Where the team consid-
ered alternative designs, the prototype tests the chosen option; if the
user has problems with it, the designer can design in the alternative on
the fly and see if it fares better.

Finally, focus keeps the conversation on the right level of design.
Early in the process the prototypes test structure, not the UI. If the
user suggests changes to the UI—a new icon, a different word—the
designer just writes them in. They dont need to be discussed—they
aren't in the focus—but the user does need to be heard. Later, when
the prototypes are intended to test the UI, the designer will discuss
and suggest alternative UI mechanisms. The same is true if the entire
focus of the project is to clean up an existing product s UI—the pro-
totyping interviews will focus on UI issues from the beginning.

THE STRUCTURE OF AN

INTERVIEW

Interviewing around a paper prototype has very much the same struc-
ture as a normal contextual interview. The difference is that after the
initial discussion, you move to working with the prototype.

S E T U P

Prototype interviews, like any Contextual Inquiry, need to be set up
in advance so that everyone knows what to expect. Users can be peo-
ple who the team has talked to already or entirely new users—its usu-
ally best to do a mix. Interview two or three customers with a proto-
type, then review the feedback from them and redesign the prototype

Focus on testing structure
first: ignore pure UI
problems

402 Chapter 19 Iterating with a Prototype

Dont run prototype

interviews with people

who dont do the work

Introduce the

"Lets pretend" situation

before going out again. If you continue to bring in new users, the
pool of customers interviewed over the course of the project will con-
tinue to grow. In this way some large projects have worked with
50-100 users over the course of the project.

It's especially important to make sure a prototype interview is set
up with the right roles and that they are doing the work the prototype

supports. The user needs to have current or recent
examples of doing the work that they can replay in
the system, or there's no way to test the prototype
with them. In setting up the interviews, find out what
the users are doing, and make sure the work you care
about is covered.

For the team, the designers who will interview need to be familiar
with the User Environment Design and the paper prototypes. Review
the prototype as a team and identify tests—issues that the prototype
will test because of the way the prototype was designed. Perhaps the
designer put lots of buttons and other interface components on the
screen—then you'll find out if the user is prone to being over-
whelmed. Perhaps the designer added a strong visual element that sep-
arates what should be one focus area into two—then you'll test
whether dividing the focus area works. Whatever the issues are, note
them along with the design choices you decided to test in developing
the User Environment model. These will refine your focus for the
interviews.

I N T R O D U C T I O N

Start by introducing yourself and the focus of your design, including
the kind of work the design supports. It's not necessary to describe the
design itself at this point. You just want *.o start the user thinking
about the kind of work you'll want him to do.

Then find out about the user, the work they do, and the particu-
lar tasks they have to do or have done recently. At this point you're
looking for a hook to get you into the prototype. You're looking for all

the different situations, current or in the recent past,
that your system would support. You may not find
one; it's possible that this person simply isn't doing
the work you support right now. But that's rare if
the interviews are well set up. Usually, you'll find a

The structure of an interview 403

couple of situations that are good candidates for re-creating or doing
for the first time in the prototype.

TRANSITION

Once youVe found a set of appropriate situations to re-create, choose
one to start with and transition to the prototype interview. Bring out
the prototype and introduce it. Give a brief summa-
ry of the screen they start with: "Here's a window
that lets you choose a configuration of the system to
base your development on." Do not do a whole
walkthrough of the window. As you introduce it,
write in the specific data for the user—get the names of the configura-
tions they might actually have seen given the work they've done. If
they have no configuration management system, so they never created
or named configurations explicitly, talk to them about how they have
organized their development. Look for ways in which the configura-
tion concept would have been useful to them, and agree on the con-
figurations they would have created in their recent development.
Name them, and write them into the prototype.

The amount of discussion needed to introduce the system depends
on how much change you're introducing to the work: if it's small, you
can go right into the prototype; if large, you'll have

Map new concepts to the

user's experience and data

to introduce your approach. "This product organizes
the software development process by tracking the
different modules, keeping developers from getting
in each other's way, and making stable versions of the
whole system as the basis of development and for release. What's
unique about it is that, instead of treating every modification to a file
as independent, it treats all the modifications that accomplish a single
fix or implement a single feature as one change." That would be suffi-
cient to introduce the customer to what you're building.

THE INTERVIEW

Once you have the prototype out and ready, move the user into interact-
ing with it. If you're reproducing a recent event, suggest that he do his
work in the prototype, and you'll play CPU, making the system work
like it should. Or get them to start interacting with the prototype by

Dont give a demo of the

new system

404 Chapter 19 Iterating with a Prototype

inviting them to explore, describing what they see and what they think it
will do. Change the mock-up as they run into problems: add and
redesign parts to fit their needs. Give them a pen so they can modify
parts of the prototype themselves. Some users will dive right into doing
their work; others will want to poke around and explore the different
parts of the system. Let them follow whichever style is natural for them.

If the user asks for an explanation of some part of the system, you
can give them a one- or two-sentence description. This is an impor-

tant place to listen for the "no." If you get a blank

Be the online help: one or
two sentences only

Ground the interview by
replaying specific events

stare and have to keep elaborating on the explana-
tion in hopes that they will get it, you have a con-
cept that doesn't work. If your user can't figure out
what a "configuration" is, or cant understand how

they might use it to organize their development, it's too big a mis-
match with their current practice to be useful. Adopting the system
will require huge amounts of retraining.

Always run prototype interviews in pairs; its too hard to try and
manage the prototype, interact with the user, and keep notes at the
same time. The notes of a prototype interview are critical to recon-
structing it with the team later—it will be hard to recover the sequence
of events from just the prototype, and an audiotape misses too much.
It usually works best to assign one person to be notetaker while the
other runs the interview and manipulates the prototype. Its usually not
necessary to videotape the interview. Video can be critical if you are
communicating back to a design team that is not going on their own
customer interviews and doesn't really understand them. Video can
also be critical if you are looking at problems in the detailed interaction
with the UI. Otherwise, we've found the extra effort of videotaping
gets in the way of rapid and frequent prototyping.

While running the interview, if you're replaying a past event, keep
referring to that event to keep the interview grounded. Ask how the

user would expect the system to respond, and when
he says something you didn't expect, design on the
fly, extending the design you have and pulling in
parts from other focus areas when they're useful
(Figure 19.3).

Designer: So how did you decide what configuration to use as
the base for fixing the bug that day?

The structure of an interview 405

b d ù c f r . t S C L^UÙli.O'il'UtM
— J — c f -

J
L L C i-tXi-L

u-ltlr LO'UUUU'.IILH ^üilC:

LiMfù" .iWlViC'l \iLilL

1

t

t

Cr.umi Drttc-̂ r ;si_isf L 1 u< ud. j \ (Stitcs j p
1 —

, —

i

, &

D

F I G U R E 1 9 , 3 A paper prototype of the "Select Base Configuration" focus area.

User: Oh, I just used V5. Thaù the version the bug was
reported against, so I started there.

D: Okay, here's our interface to let you specify the base
configuration. What do you do?

U: I guess I type the name in here. (Indicates the text entry
field)

D : Go ahead.

U: (Writes "V" with a pen on the field) Now what happens?

D: What would you expect?

U: Probably the list changes so its just the configurations that
in with "V."

D : Oh. Okay, thaù what happens.

U: (Writes "5") There s only one "V5, "so now I hit the
"Okay" button and Im done.

406 Chapter 19 Iterating with a Prototype

D : Didntyou show me you also had a V5.1?

U: Oh yeah. Well the exact match should show up first on the
list and be selected, so I can still just press "Okay. "

This isn't the design that was originally intended—the team didn't
think about using the "name" field as a simple query filter—but it fits
with the design. The user assumes an "Okay" button rather than
pressing RETURN or "Select," and the designer doesn't bring it up—
that's a user interface question that isn't in her focus right now. This is
an example of following a user's design to see where it goes. At this
point the designer could back the user up and suggest the original
design: "Suppose I told you that this is just a text entry field for
choosing a configuration by name?" That would allow her to test the
team's design after seeing what the user had in mind.

But the designer won't return to her team only with a UI tweak.
What she's discovered challenges their User Environment Design:

should there be a "Find configuration" focus area

Use the UI conversation
to see structural issues

separate from the "Select base configuration" focus
area at all? The user's idea suggests that some level of
quick query can and should be integrated right into
"Select base configuration." Perhaps there's no need

for "Find configuration." It makes sense as a separate focus area only if
querying is so complicated that just forming the query is a separate
kind of work. Do users ever really need to form such complicated
queries, especially if all they are doing is choosing one configuration
to work with? So our designer moves the interview forward by dis-
cussing the need for real queries and probing for how this user speci-
fies configurations—looking for cases when a simple search by name
would not work. Because she is in the User Environment Design con-
versation with the team, it's easy to guide the interview to answer
questions about structure.

W R A P - U P

The final wrap-up of a prototype interview is a simple summary of the
key points that came up during the interview. Summarize the points,
and if it's useful, summarize any parts of the prototype you didn't get to

The structure of an interview 407

for a quick reaction. But this won't be contextual data, so don't spend
a lot of time on it. Finally, check the emotional aspect. Ask: Does he
like it? Would he buy or recommend buying it? How
much would he pay for it? You're not looking for a
real committed figure here. You're looking for a sense
of how valuable they think the system really is and
also the unarticulated expectations and threshold fig-
ures that lie behind how they think about cost. You'll get a response that
incorporates any excitement generated by the interview—by playing
with and manipulating the design. In this way, the response is better
grounded than you might get from a focus group or demo.

This is the general pattern of a prototype interview. If you're track-
ing an ongoing task rather than replaying an old one, the user will
alternate between doing some real work and then
redoing it in the prototype, but otherwise the pat-
tern is the same. Designer and user discuss the pro-
totype, using the task to drive the conversation.
From time to time they elaborate on some idea of
the user's, then come back to the prototype as
designed. The designer uses her knowledge of the User Environment
Design and technology to drive the interview. If you can recognize
when the user is challenging some aspect of the User Environment
Design, you can probe for details immediately, instead of having to
wait for another interview.

Later in the design process, when you trust the structure in the
prototype, concentrate more on the user interface and on enforcing
the limits of a real system. When the user tries to do something the
design doesn't allow, instead of taking it as an opportunity for co-
design, act like a real CPU: beep at him. See if he can figure out how
to make the system work given the limitations you're building in.

Follow the task the user is doing or re-creating until it's done or
has moved beyond the scope covered by the prototype. Then choose
another situation to follow that will exercise any parts of the proto-
type that haven't been touched yet. Usually, you won't get to all the
parts of the prototype and that's okay; end the interview after two or
three hours and save the rest of the prototype for the next user.

Check the sales point: do

they love it?

Dont create scripts—let

the user's real work be

the script

408 Chapter 19 Iterating with a Prototype

THE INTERPRETATION SESSION

The last part of a prototype interview is parallel to a contextual inter-
view: the interviewers bring the data back to a design team and replay
the interview for them so that everyone can see what happened and
offer their different perspectives. This interpretation session is focused
narrowly on identifying the issues raised by the interview.

Issues are captured on Post-its by the recorder, one point per Post-
it. Points to capture are any new aspects of work practice that haven't
been seen before, validations of design elements that worked for the
user as designed, problems that got in the user's way, places where the
structure of the system didn't help him get his work done, and any
user interface validation and problems.

Most of the data from an early prototype interview will be struc-
tural issues for the User Environment Design. Capture these and stick

them directly to the affected part of the User Envi-

Use the models and the
UED to organize findings

ronment Design. There will be some issues for the
user interface, even though this is not the primary
focus—the issues are captured and can be dealt with
as the interface is refined. Any issue that has to do

with presentation, layout, or wording is a UI issue. There will also be
some issues for the work models. These include any points that capture
new aspects of work practice that aren't properly represented on the
existing models. Rather than try to update the models in the meeting,
it's easier to capture the issue and stick it right to the model in ques-
tion. If there's any disagreement about where an issue goes, move it
upstream—put it on the User Environment Design in preference to
the UI and on the work models in preference to either. This whole ses-
sion is good practice in separating conversations, as each conversation
has its own model and its own place on the wall.

Throughout the interpretation session, the primary task is to see
behind the user's reaction to the UI to understand the work issue. If
the user was overwhelmed, was that because the focus area wasn't
clean, the design didn't match his work, or was the UI for that part of
the system unnecessarily complex? Examine the user's actions and
words to understand what his reaction meant to the design.

Iteration 409

I T E R A T I O N

When a design has been tested with two to four users, its time to iterate
it. The issues raised by the users are grouped so related issues can be
addressed together. Changes to work models may affect the User Envi-
ronment Design, and changes to the User Environment may affect the
user interface, so the first issues to deal with are those related to the work
models—move forward from there. No one wants to spend hours on
some aspect of the user interface, only to discover later that a change to
the User Environment Design obviates that whole part of the interface.

For the work models, collect the issues from all users for each type
of model. Organize them to see what they imply for the model. Extend
it with any new aspects of work practice that came
from this interview: new roles or flows between roles,
new strategies, new influences, or new structures in
the physical environment. If this new data affects the
focus of the design, you'll deal with it as part of
addressing the User Environment Design; otherwise, it becomes part
of your permanent representation of your customer population.

Then turn to the User Environment Design. First consider
whether any of the work model changes affect the design, and if so
identify which parts they affect. Then look across the data from all the
users and ask what the primary structural issues are. Look for ways to
redesign the overall system to address these issues. Then start working
on sets of issues part by part, starting with the parts that are involved
in the most important and far-reaching issues. Collect the issues
across all users for each of those parts, and consider how to redesign
them to address the issues and the new information from the models.
Use the storyboards to help you think through particular tasks in the
changed system. Go on from section to section of the User Environ-
ment Design until you've addressed all the issues you need to. You
may decide that some issues are at too low a level of detail to bother
with yet or affect some part of the system that is too peripheral.
There's no point in spending a lot of time to get a part of the design
right if it s only going to be cut later. Work to get the overall system
stable, then prioritize what to ship, and then do the details.

Restructuring the system tends to pull it apart as a system, so finish
with a validation pass to reorganize it and pull it back together again.
Clean up the loose ends, and make sure the design is reasonably clean.

Address work issues first,

then UEDy and then UI

410 Chapter 19 Iterating with a Prototype

Maintain regular

customer contact to keep

yourselves moving forward

Finally, roll the User Environment changes forward into a re-
design of the user interface. First look for broad issues that affect the
whole interface: Did the base metaphor work? Were your interaction
mechanisms usable? Were there consistency issues to address? Decide
what to do about these issues. If you'll change the base metaphor, do
it first, before addressing any of the particular issues. Then move from
focus area to focus area, collect the user interface parts that represent a
focus area and the issues associated with them, and redesign the inter-
face to deal with the issues and User Environment changes together.

C O M P L E T I N G A D E S I G N

This is the iterative, customer-centered process of Contextual Design.
As you expand your design to address more and more of your vision,

the process will change and flex to accommodate
new issues. The core design may be quite stable, but
when you move to address a new area of work, you'll
collect much more basic work practice data. You may
need to switch to capture a set of work models in the
middle of the interview. You may capture sequences

When structure stabilizesy

move to testing UIdirectly

for a task that you were never able to observe until this point. Then the
interview will move back to the prototype, and your interpretation
session will go back to primarily capturing issues.

But you're always using the prototype to drive customer visits and
keep the team grounded in real customer data. Returning to the cus-
tomer every 10 days to two weeks keeps the team focused and moving
forward; in our experience, lack of regular contact with customers is a
primary reason teams lose focus and break into arguments with each
other. A prototyping approach to design keeps you going.

This iterative design process continues until the team is sure it has
a workable design. Usually after two to three iterations of a part of the

User Environment Design with customers, that part
begins to stabilize. The number of structural issues,
which are recorded on the User Environment
Design, fall off, and the UI issues start to predomi-
nate. This is your signal that the structure is pretty

much right. Move to testing primarily the UI while simultaneously
extending the prototype to test the structure of another part of the

Completing a design 411

system. The part that has stabilized can be moved simultaneously to
implementation design and code. Prioritize what parts of the system
to deliver, as we described in Chapter 16, and build a shipping User
Environment Design for the next release. This becomes your working
specification.

When you move through a design in this way, you can be confi-
dent that you've understood the requirements and the appropriate sys-
tem structure. Development of the system can proceed through the
implementation and testing of running code in much the same way
that we've tested prototypes. This maintains the customer contact
while implementation progresses. The iterative prototyping process
merges with an iterative implementation process that coordinates all
the parts of the team to deliver on the vision.

This page intentionally left blank

C O N C L U S I O N

This page intentionally left blank

Putting It into
Practice

No process works for every problem, in every organization, for
every team structure. In fact, the first job of a design team is to

design the process that will enable them to collaborate in gathering
data, designing a system, and producing the result.

This is as true for Contextual Design as for any other process. The
special contribution of Contextual Design is that it offers a complete
set of techniques, guiding design from gathering ini-
tial data about what matters to make, to defining
the system function and structure that works for the
customer. Each technique is a placeholder for dis-
cussing a particular set of issues about designing for
the customer in a real organization. If you're defin-
ing a front-end design process, the steps of Contextual Design suggest
the thought steps you need to cover, in a framework that hangs to-
gether. You can alter or substitute steps that achieve the same intent,
add new techniques to put more emphasis on a step, or remove steps
you believe are irrelevant to your particular problem. In this way,
Contextual Design can be a backbone for designing customer-
centered processes. (Constantine [1996] and Hefley and Romo [1994]
offer other ways to fit customer-centered approaches into the software
engineering process.)

Contextual Design can be
a template for designing
your design processes

416 Chapter 20 Putting It into Practice

THE PRINCIPLES OF CONTEXTUAL

DESIGN

Contextual Design is grounded in principles of what it takes to drive
design thinking, what makes for good customer data, and what's
going on in teams and organizations to ensure that the design process
works. Just as the principles of Contextual Inquiry redesign the
inquiry situation, you can use the principles of Contextual Design to
redesign the entire design process. In the spirit of a consolidated
sequence model, we've revealed the intents of each part of Contextual
Design in Table 20.1. The principles on which the process is based fall
into three categories: using customer data, running the team, and
driving design thinking. We've discussed these techniques throughout
the book but will summarize them here.

THE PRINCIPLE OF DATA

Ground all design action in an explicit, trustworthy understanding of
your customers and how they work. Without a clear understanding

of your customers, based on real events rather than

Decide what data you
need to make a decision
and how to get it

anecdotes, and captured explicitly, you have no cri-
teria for deciding on one action or design decision
over another. At every point in the design process,
ask what data is needed to justify one decision over
another and what the best way is to gather that

data. But customers cannot tell you the important aspects of their
own work practice because they are implicit and unrecognized. To
gather trustworthy data, use a process that reveals the unarticulated
aspects of work. Contextual Inquiry reveals the hidden aspects of
work practice; paper prototyping reveals how a particular design
plays out in the real work context. To ensure that the data can be
trusted, set up the situation to make the customer the best teacher
possible. This means basing interactions on the customer's own work
situation, where they are the expert, and communicating with them
in their own language.

Data on customer work practice will always be complex because
work practice is complex, so gathering data necessarily includes mech-
anisms for handling that complexity. Use a concrete representation of
the customer data to reveal how the work hangs together as a whole.

The principles of Contextual Design 417

Use representations that reveal both the common structure that ap-
plies across customers and also the unique variation that your design
will have to account for. And that representation should effectively
highlight those aspects of work that are most critical to be considered
during system design.

Gathering customer data is only worthwhile because it helps make
design decisions. We aren't gathering random data about people in the
world; we're using the data to drive our design
processes. All data is gathered for a purpose, and that
purpose sets your focus as a team. It will tell you
what matters to make, how to structure your system,
and how you are doing as you design and build it.
The data is the continuing ground for design, and it
drives continuous iteration of your ideas. By providing an external
check on the design, it alleviates arguments in the team.

THE PRINCIPLE OF THE TEAM

Design is done by people, and managing people is an important part of
any process. Anytime you can build on peoples natural design process-
es, you're better off. In design discussions, under-
stand what conversations people are trying to have
and make them explicit. Are they asking about what's
true for the customer? What would make a good
design? What's implementable? Maintaining control
of a meeting is now an important skill. Give each conversation a time
to happen and a tangible representation. Use the representation to
keep the team focused on the right conversation, and put off other
conversations to the appropriate time. Capture off-topic issues, so the
people raising them know they are heard and so the team can be sure
they are not lost. Define and manage the roles and procedures so
everyone knows how to behave.

Drawings representing the customer work practice and the system
work model help manage the design conversation and keep the design
coherent, but they also manage communication within and beyond
the team. The external representation enables you to check your
thinking for errors and omissions, share it with others, and communi-
cate it to the larger organization. Building the representation together
allows you to include others in the thinking process, so the final

Ask: what will you design

differently if you have

this data?

Running a meeting is an

important design skill

418 Chapter 20 Putting It into Practice

S T E P

Contextual
Inquiry

Interpretation
sessions

Work models

Affinity
diagram

Work model
consolidation

C U S T O M E R D A T A

• Gather detailed data
needed for design

• Discover implicit aspects
of work that would
normally be invisible

• Use whole team's
perspective to see what
matters in the work

• Capture all aspects of one
customer's work
efficiently

• Create a coherent
representation of work
practice

• Record actual user data to
check the system

• Distinguish between
opinions and real data

• Organize data across all
customers to reveal scope
of issues

• Provide a review of the
data prior to
consolidation and
visioning

• Identify holes in the data

• Create one statement of
the customer population

• Show common structure
without losing variation
across customers

I N T E N T S

D E S I G N T H I N K I N G

• Put technical experts in
the customer data

• Stimulate the recognition
of implications for design

• Manage the flood of
insight from all team
members

• Capture design ideas as
they come

• Share preliminary design
ideas to start cross-
pollination

• Reveal aspects of work
that matter for design

• Capture elements of work
in a tangible form

• Push from point fixes to
systemic solutions

• Introduce inductive
thinking

• Allow individuals to
develop their response to
the data

• Share design ideas
without evaluation

• Reveal implications for
design through dialog
with each model

T E A M A N D

O R G A N I Z A T I O N

• Build the team through
shared experiences

• Collect concrete data to
resolve conflicts

• Bring multiple
perspectives to bear on
the data

• Teach team members the
perspectives of other
organizations

• Keep everyone engaged in
processing the data

• Feed market stories,
scenarios, and planning

• Create a culture in which
concrete data is the basis
for making decisions

• Drive consensus about
what the data means

• Make data easy to share
• Make key customer issues

stand out
• Create the first step

toward corporate
knowledge of their
customer

• Create a map of customer
population for planning,
sharing, and reuse

• Make it possible to
validate understandings
with customers

T A B L E 2 0 . 1 The key intents of Contextual Design. o

The principles of Contextual Design 419

STEP

Vision

Storyboards

User
Environment
Design

Paper
prototyping

C U S T O M E R D A T A

• Respond to the data with
new work practice designs

• Shift the teams focus
from tools to work
practice

• Redesign work practice,
not technology

• Ground redesign in
consolidated data

• Ensure redesigned work
practice hangs together

• Design the user's
experience of the system
to be coherent

• Allow different user
scenarios to be checked in
the system

• Check system structure
and user interface with
customer

• Let the customer
communicate in their
own language

• Get an additional layer of
detailed data about
actions within the system

• Check sales point of
potential products

I N T E N T S

D E S I G N T H I N K I N G

• Create a coherent
response by reacting to
the data rapidly

• Generate divergent
options before deciding
on one

• Separate evaluation from
generation of ideas

• Work out details of vision
sequentially

• Let designers think in the
UI without committing
to it

• Make the system work
model explicit

• Show relationships
between parts of the
system

• Find errors in system
structure before coding

• Drive later object
modeling

• Separate out the UI
conversation

• Provide a fast way to
check design alternatives

• Learn to separate UI from
structural implications

T E A M A N D

O R G A N I Z A T I O N

• Develop design ideas
together as a team

• Defuse ownership in ideas

• Create a public
representation of a task
for sharing and checking

• Enable parallel design
work in small teams

• Make the system structure
explicit and sharable

• Show the relationship
between systems

• Provide a tool for
planning and
coordinating multiple
systems and teams

• Provide a high-level
specification

• Create and test ideas
quickly to prevent
overattachment

• Ensure a shared
understanding of what
customers find valuable

• Share ideas in terms that
customers and
management can
understand

T A B L E 20 .1 continued

420 Chapter 20 Putting It into Practice

Be cross-functional: team
skill set determines the
scope of the design

design reflects the expertise of the whole team. Contextual Design
incorporates a set of diagramming techniques that support the conver-
sations we've found most useful: what the work practice of the cus-
tomers is, what the new work practice is, how a user will perform a
specific task in the new system, and what the system work model is. If
you need to introduce additional conversations, introduce new tech-
niques to represent them.

The people you include in a design process determine the kind of
design you get. If you want a corporate response to the customer's

whole work that can drive all parts of your company,
put together a cross-functional design team—a team
with members only from marketing, or engineering,
or any other function, will emphasize solutions they
can implement. Make sure you have a mix of skills
on the team, but especially the skill of seeing design

implications in peoples everyday work practice. This may not be the
strength of your best engineers. Look for it everywhere in your organi-
zation (documentation people often have the mix of technical and
customer knowledge that makes them strong here).

Effective team design depends on being able to manage design
meetings. Define the roles you need to make the discussion work, and
put people in the roles who can play them well. Give the team a clear
process to follow, so they don't have to spend their time arguing about
what they are doing as well as what they are building.

Support the natural
alternation between doing
and reflecting

THE PRINCIPLE OF DESIGN THINKING

Support the needs of design thinking itself. A design process naturally
alternates between working out a piece of design sequentially, then

stepping back and considering the whole design as a
structure. Any sequential design step wants a follow-
ing step to look at the whole and check for appropri-
ate structure, consistency, and completeness. Once
the structure is good, the natural next step is to work
out the next level of detail sequentially. This al-

ternation between doing and reflecting keeps the design moving for-
ward while remaining coherent. Use the appropriate formalism or
drawings to capture the key issues for each step. The successive trans-
formations act like a walkthrough of the design; they force your team

Breaking up design responsibilities across groups 421

Push systemic thought

throughout the process

to walk through the whole design and restate what they mean, finding
holes and inconsistencies in the process.

The system you design is a whole and needs to fit together as a
whole, or it won't provide coherent support for your customers' work.
Define your design process to start by making the
work issues real for the team so they can create new
solutions. Then lead your team from focusing on
individual features to thinking about how the design
works as a whole. Use the appropriate representation
of the design (such as the User Environment model) to show it as a
whole and to make issues real so the team can envision solutions to
them. Let developers working on a part use this representation to see
how their part relates to the rest of the design. The right representa-
tion guides the design conversation and manages the complexity of
the design by representing it appropriately. It shows the whole design
in a form that the team can comprehend and manipulate.

B R E A K I N G U P D E S I G N

R E S P O N S I B I L I T I E S A C R O S S

G R O U P S

These considerations drove the structure of Contextual Design. Use
them to help guide any tailoring of the design process you do to fit
your own project and organizational structure. Below, we discuss
some different project situations and how Contextual Design might
be adapted to them. The roles driving system design are very similar
from organization to organization (as we learned in Part 3), but they'll
be mapped to different job functions in your organization, and each
mapping will lead to different communication and interpersonal
problems. Design the process to recognize and ameliorate these prob-
lems, but remember there's no perfect organizational structure. You're
always balancing role isolation against role strain.

Just as consolidated sequences break into activities that are com-
mon across whole customer populations, systems design breaks into
activities that are common across organizations we've worked with.
The activities we've seen are finding out what matters in the customer
population, deciding how to respond at a high level, deciding how to

422 Chapter 20 Putting It into Practice

structure the system to fit its users, choosing how to ship in coherent
releases, and doing the implementation (we're focused on the front-
end process, so we collapse all the parts of implementation into one).

The big difference across organizations is in how they map the
natural activities of design to job functions. In old-time engineering-
driven organizations, engineering initiated projects and marketing
tried to find the market for them. More typically, marketing decides
what a product would be based on customer contact and decides how
to respond, and engineering determines how to structure the system.
This is also the typical split between systems analysts or internal cus-
tomers and developers in IT organizations. Whatever the formal defi-
nition of roles, it's rare to find a development organization that really
only codes to a specification they are given, with no extensions—in
fact, we've never worked with one. At the end of the process, usability
has to figure out how the system is doing in fitting to the users' work.

The way the activities of design are split across job functions de-
termines the kind of problems you will have. When a separate group

decides how to respond to the customer work situa-

How you break

design activities across

groups determines what

problems you have

tion, they then have to convince development that
they know what they're talking about when they say
what to build. But the design response comes from
knowing what's possible with technology, so some
level of engineering knowledge is required even if
the job is given to systems analysts or marketers.

Conversely, developers still need to know and have contact with their
customers because they have to know the structure of the work to
design the structure of the solution. Creating a middleman to do
analysis—a customer who focuses on communicating to engineering
or an engineer who takes the job of learning about the customer—
doesn't meet the need for combining customer and technical knowl-
edge to envision new solutions. Even with a mix of customer and
technical knowledge on the team, the design still has to be communi-
cated to the larger development team that will build it—the need for
communicating a design to another group doesn't go away.

Communicating a design or handing off responsibility between
groups is always a danger point. The next group never understands

Breaking up design responsibilities across groups 423

everything you understand, they always have questions you didn't
think of, and their different focus means they need additional data
you never collected. So don't think of communica- .
tion happening primarily through any sort of docu- n K M J • / ^

TV & r J . i r i r Dont create role isolation-
ment. Linear text never communicates the reel for 7 . . .

i i • , _ _ i s + u A + ii plan activities to generate
why a design element matters. Its too hard to see all \ r s

the context and implications of different decisions. snared perspectives
It's even hard to really describe all the functions of a
system in enough detail to code.

So look for ways to create events and partnerships that make the
work and the reasons for decisions real. Communicate the consolidat-
ed models and the vision in addition to the User Environment
Design. Take developers out on customer visits so they understand the
context at a visceral level (this is probably the single most powerful
technique for changing developers' perspective). Build a living online
specification with hot links between data, storyboard, User Environ-
ment focus area, and functional specification. Build online prototypes
that demonstrate the behavior you want. Treat the communication as
one element of an ongoing relationship, not as a handoff.

Splitting the process up across groups also alters the different
groups' perceptions of time. Expecting engineering to gather customer
data, when they currently don't, always looks like additional overhead,
no matter how much they need the data and how much time they lose
by not having it. On the other hand, anything marketing and analysts
do is invisible to engineering. One team suggested that moving the task
of gathering data to marketing would reduce the time the process takes.
It's an illusion, of course—it takes just as long in end-to-end calendar
time, but the part engineering would have to do would be shorter.

Fitting customer-centered design into your organization works best
when you consider and account for the division of responsibilities that
already exists. When groups recognize how the process can help them
achieve their goals and meet their needs, they are more likely to wel-
come the change. Marketing and analysts will be more excited by the
front end of the process, as will usability and UI designers; engineering
will like the tail end, including prototyping. Fit the way you use the
process to the organization and the specific project you undertake.

424 Chapter 20 Putting It into Practice

Gather data on point fixes
when that's all anyone
can respond to

ADDRESSING DIFFERENT DESIGN

PROBLEMS

There are a number of different ways that design problems present
themselves in organizations. Each kind of problem needs a different de-
sign approach, appropriate to the scale and time frame of the problem.
Here are a few of the most common kinds of problem weVe seen and
how we've altered Contextual Design to address them. (See Coble et al.
[1997] and Wixon and Ramey [1996] for experience reports on using
contextual methods.)

We have a base level ready to test. Is it okay? What are the top 10 issues
we should fix? In this case, no one wants to hear that they are designing
the wrong product. A huge investigation would be inappropriate—either
it will be a waste of time because it will confirm what everyone is doing,
or it will suggest doing something very different, which will be threaten-
ing because there isn't time to do anything very different. A design
process that answers a question people aren't ready to ask isn't successful.
Success comes from influencing what the organization is delivering.

In this case, try stripping Contextual Design down to evaluate just
the specific design. Use contextual interviews to see how people use the

current system or prototype, with a focus on how the
system gets in their way or interferes with their work.
Interpret the interviews and capture notes, but build
no work models. At most, capture low-level sequences
to see problems and intents in how users interact with
the system. Build an affinity to organize findings,

and use it to identify the key issues to address in this version.
Such a process could be run by a small group—perhaps usability

experts—on behalf of a larger design team. It doesn't support the team
in actually working out any of the issues, but does use customer data
to get a quick check of an existing design and direction on how to fix
it. In a week, the small team could collect and analyze data from four
to eight customers—which is enough for a first cut at issues to fix.

Tve already started development. Am I okay? In this case, work has
started. Some part of the UI has been designed; some part of the code
has been written. Now you want to know if you're on track.

It is possible to start Contextual Design in the middle. Start with
a reverse User Environment model of your existing user interface to

Addressing different design problems 425

see its structure. Just doing the model may reveal a set of issues you
want to address, and it will enable you to see structural issues in pro-
totypes. Then mock up the system in paper and pro-
totype it with users. Review the issues raised in an
interpretation session, evaluate their importance,
and feed the ones that have to be fixed back to
development. When the current version is released,
do regular Contextual Inquiries to build up models of the customer,
and redesign the system based on the reverse User Environment
Design.

Such a process can be run by a small subteam—two to four UI
designers, usability engineers, and developers could do it within two
weeks as a quick status check and midcourse correction.

We need to redesign our existing product. How can we rework it to
address the customers issues better? In contrast to the prior case, this
design team is expecting to do some redesign. They aren't just looking
for point problems to fix; they're looking for how best to improve an
existing system. Usually they're at the beginning of a release cycle, but
the time allotted to the release is relatively short.

Design a process that incorporates the critical structural elements
of Contextual Design. Do contextual interviews and interpretation ses-
sions, capture notes, but don't build flow or cultural
models. These models show the larger work context
and reveal how to expand the system scope or design
other continuous systems. You're not doing that in
this project—you're improving the system in the
scope it has—so you don't need these models.
Instead, build sequence, artifact, and physical models
to see how the system interacts with the users' world structurally.

Rather than do formal consolidations, use the sequences to gener-
ate scenarios of use. These scenarios make a composite of the cus-
tomers you interviewed to tell the story of a typical user. Build an
affinity, and use the affinity, scenarios, and models to brainstorm issues
and design responses. See work structure by looking for natural clusters
of work and artifacts in the physical model. Look for data used in arti-
facts. Run a visioning session based on key issues you identify, build up
the design response, build storyboards based on the scenarios, and go
right to UI design and paper prototyping. Artifacts guide the layout
and presentation of the UI. Use the structural thinking behind the

Do a reverse UED and

paper mock-up interviews

Use models that show

a big view of the work

when you re affecting the

whole work

426 Chapter 20 Putting It into Practice

User Environment Design to help organize the UI, but don't build a
User Environment diagram explicitly.

This process gets you as quickly as possible from seeing the data
to organizing a design response. When it's not a goal to create a new
kind of system, but to create the next iteration on a system that already
exists, it's an appropriate way to use the process. Such a process could
be run in about two months by a small group of four to six, drawn
from engineering, UI design, usability, and marketing. Eight to fifteen
customer interviews would give enough data.

What new thing should we create in the world? This question is
asked in different ways by different teams. Perhaps the team has been
given the mandate to rethink an internal business process. Perhaps
marketing has asked the team to invent a new product for a given
market. Perhaps a version of the system exists, but the team wants to
reinvent the market and so recapture the competitive edge.

In these cases, you want the full Contextual Design process as
we've laid it out in this book. The models reveal the work practice of

the whole customer population and make it possible

Use the whole process

when you need to set

strategic direction

to invent wholly new approaches. Because you see
how the work ties together across roles and tasks,
you can invent a strategy for supporting the work
coherently with multiple systems. The User Envi-
ronment Design organizes your response, just as the

consolidated work models organize your understanding of the cus-
tomer. It drives all aspects of implementation, including object-oriented
design of the software. If you want to evolve an existing system, use a
reverse User Environment Design to see the structure of the existing
system and build on it. And expect to collect and incorporate more
customer data into your consolidated work models. They are your
picture of the customer population and will continue to be useful over
the next few years.

This process could be run by a marketing team or by a mixture of
engineering and marketing or systems analysts. A team driven by mar-
keting might stop after the vision, identifying requirements on the sys-
tem, services, and market message, but leaving it to engineering to
structure the system. Though Contextual Design projects have been
completed in five weeks, a big strategy like this will take at least four
months to develop the User Environment Design and prototype it. And
because of all the organizations that have to buy in, it usually requires a

Addressing different design problems 427

larger team of six to eight. Larger teams require more management;
consider getting an external facilitator if you need a larger team.

How can we tie our products or applications together? This is the
question asked by organizations that have developed many indepen-
dent systems over the years, only to discover that they don't add up to
complete support for the customers5 work practice. The goal is both
to integrate the independent systems, match them better to the cus-
tomers' needs, and extend them to support more of the work domain.

In this case, use the full Contextual Design process, but precede it
with a reverse User Environment model of the existing systems, cap-
turing primary focus areas, purpose, and key func-
tions only. This gives you a base understanding of
what you have and starts the conversation of how
you can fit the various systems together. But integrat-
ing the systems right, so that they provide seamless
support of the work, depends on understanding the
work they will support, and that's what the Contextual Design portion
of the project provides. When you get to designing the system response
to the work, instead of starting from scratch, start from the high-level
reverse User Environment model you built. Modify it to fit the work
better, and you'll both specify an integration strategy and address the
worst mismatches between your systems and your customers' work.
With a redesigned User Environment in place, each application team
can redesign their own part to fît, using the Contextual Design
process to get detailed data on their own customers' work practice.

Like any strategic project, such a project requires participation
from the affected parties, particularly the different systems that will be
integrated. Expect a team of six to eight to take at least four months.

In each of these cases, start with the design problem the team is
facing and pull together the parts of the process that address that
problem. Beware of including too much of the

Do a reverse UED and
full Contextual Design to
find old and new issues

process—you'll make the process take longer and
drive the team to consider high-level issues they can't
really address. But look at the intents behind each
part of the process to ensure you do include all the
parts you need. And pull in additional techniques if
you need them. One team with a strong need to innovate decided they
were getting stale and pulled creativity-enhancing techniques into the

The nature of the design
problem determines the
best design process

428 Chapter 20 Putting It into Practice

Design a process to fit the
size of the team

brainstorming part of the process. (They used "scenario modeling" to
help them expand the possibilities they came up with.) You might use
Participatory Design techniques, such as futures workshops and
metaphors workshops (Kensing and Madsen 1991), during brain-
storming and visioning to include the customers in the design process.
A BPR project might use high-level process maps to show the whole
business process across departments, with consolidated sequences
showing how each task in the process is done. Or you might include
more formal UI design techniques and usability methods at the end of
the process. In this way, you'll build on the basic framework of Con-
textual Design to create a customer-centered process that meets your
specific needs.

TEAM STRUCTURE

Whatever the design problem, you'll have to deal with the structure of
the team doing the work. Managing a design team of 15 people is a
very different problem than trying to specify a system with only two
analysts. It's always best to include multiple perspectives and have
cross-functional representation on the team, but given your organiza-
tional structure, achieving that goal may be hard.

When the whole project is small (four to six people), doing the
front-end design can be the full-time job of the team. When the team

is large, it doesn't make sense for the whole team to
work on the design together—instead, assign a
smaller group to act for the team. Whether it's one
or two analysts defining a system that a larger group
will code, a single marketer studying the market and

defining a product direction for an engineering team, or a few de-
signers specifying a system to build, these few people will work out
the system that a larger number of people will code later. Be aware
that these teams will feel intense pressure to keep the coders busy. If
their design isn't complete in time, the coders will finish whatever they
are working on and either quit working or start building with no data
or design. And the relationship between the small design team and the
larger group of coders is often tricky—coders get used to being the
ones who have final say over what goes into the design.

Team structure 429

The small group can have core and adjunct members. Core mem-
bers devote most of their time (60-80%) to the project and are pri-
marily responsible for it. Adjunct members devote less time (30-50%)
but are involved in working sessions every week. People who want to
be part of the process but can't devote the time can be adjuncts.
Adjunct members expand the team with additional perspectives and
more manpower throughout the process. Inviting people from the
larger team to participate in design activities is an important part of
the small team's strategy for communicating the customer data and
their designs.

When you're operating with very tight resources, consider sharing
people across projects. If you have a team of one or two and need
additional people to build your affinity invite them
in for a day—then help them out with theirs when
they need people. Review each other's data and give
each other design ideas. In this way, you not only
get the people you need, but you also cross-fertilize
data and design ideas across projects. You can still do
all the parts of the process with one or two people, but it will take
longer. Even though the man-hours don't go up, the clock time does,
and that affects how people perceive the process. When you have mul-
tiple projects addressing the same work domain—the same internal
department or external market—pool your resources. Develop one set
of models for the whole customer population, and use them to drive
all the projects. Build up a single User Environment Design to show
how the different systems interrelate.

Sometimes the initial team is responsible for less of the design.
You're a marketing team that is only supposed to understand the mar-
ket and decide what kind of product to sell, or
you're a data-gathering team that is supposed to
report to the larger team that makes the real deci-
sion about what to build, or you're a business analyst
that has to decide what the business department
needs. In these cases, you'll need an explicit transi-
tion from the data-gathering team to the engineering team. Run the
transition by walking the engineering team through the affinity and
consolidated work models as described in Part 4, then vision together.
Remember: anytime you vision with a group, they have to be thor-
oughly grounded in the data first. They have to know it, and they

Build one set of models
for multiple projects when
resources are tight

Use a transition process to
pull in other peoples ideas
and their buy-in

Chapter 20 Putting It into Practice

have to believe its valid. Once they've done the vision, the engineer-
ing team can work it out using the User Environment Design or their
own process. This kind of transition is a good way to bring in the cus-
tomer when you're designing an internal system. It allows customers
and designers to look at and react to work issues together and design
process and technical solutions together.

Before trying to run a transition process, clean up the consolidat-
ed models and affinity. This is a good point to get them online. A
graphical language communicates by shape, color, relative size, ar-
rangement on the page, and white space. If the models are too messy
or poorly arranged, they won't communicate well. You're introducing
people who aren't familiar with the models to a new set of concepts—
they'll do better if they don't have to make sense of messy models.

When a small team does the design, it's important that the larger
group understand what the data is and where it came from. The
whole group has to feel involved and committed to the whole process.
Otherwise, they'll decide that the design team is locked in their ivory
tower, doesn't understand the real issues, and doesn't understand what
it really takes to deliver a product. Keep lines of communication open
so this doesn't happen. A useful goal is that every developer should go
out on at least one customer interview. They can accompany the
interviewer, and you can go over the interviewing rules with them
ahead of time (have them read Chapter 3 on interviewing principles).
When they understand where the data comes from, they'll have more
confidence in the resulting design.

MAINTAINING A STRATEGIC

CUSTOMER FOCUS

If you choose, the consolidated models can become a reusable resource
over time, especially if you put them online. As the investigation and
design team gathers additional data, filling in holes and expanding
their understanding to new roles and tasks, they'll extend the models
with this new information. When the engineering team ships a prod-
uct and comes up for air, ready to think about what to do next, the
models remind them of who the customer is and all the parts of their
work that the system doesn't address yet. If the investigation team is

Maintaining a strategic customer focus 431

Investigate
new work practice
and build up UED

Consolidated I Investigate new
> current ^> work practice and
designs / \ build up UED

Consolidate
current N
designs /

Investigate
new work practice
and build up UED

N; \i
X Acceptance X Working
/ test A version

F I G U R E 2 0 . 1 One way to handle the "feed the coders" problem. An ongoing
team, which might include marketing, business analysts, and designers, continues to
develop the high-level design, while the engineering team builds the previous version.
When they're ready to do the next phase, the design team decides what part of the
design is the right thing to ship next, ties up the loose ends, and drops out a specifica-
tion for it (including a shipping User Environment Design and paper prototypes).

separate from the engineering team, they can expand and extend the
models while the engineering team codes a release. They'll be ready
with new insights and designs when a release goes out (Figure 20.1).

If, on the other hand, the investigation and coding teams are the
same, the models help maintain a conversation about strategy and how
to support the customer population. It's hard to
maintain an ongoing conversation about strategy—
the day-to-day distractions of getting a system built
always seem more critical. But it is possible to take

Consolidated models help
maintain a strategic focus

Chapter 20 Putting It into Practice

time out to look at an organizations strategy—for example, by sched-
uling a week every few months for focusing on strategic issues. When
you do this, the consolidated models, affinity, and long-term User
Environment Design together hold the strategic conversation. They
show who the customer population is, what their issues are, and how
the team is responding with a coherent system. The team can collect
data, if needed, to determine whether there have been changes in the
work practice that they need to respond to, whether their strategic
direction still makes sense, and whether they are on target for deliver-
ing to that strategy.

You can choose whether to start growing the work models from a
broad or narrow focus. Starting with a broad focus covers a wide vari-
ety of roles, work situations, and demographic variants quickly. How-
ever, it requires a lot of time up front to develop this high-level infor-
mation, and it's easy to get overwhelmed by the scale of the problem.
Its also possible to develop the larger view over time. Start with the
focus needed to drive a specific project. As you do more projects,
reuse and add on to the data collected by the first project. From time
to time, you can gather a little data from very different situations just
to check your data. One team went to Japan and the military to get as
different a perspective on the work they were supporting as possible.
In this way you build up an understanding of the whole market with-
out ever having to gather large amounts of information that aren't
immediately applicable to a single project. There is some risk in
designing from more limited data, and you won't see the whole diver-
sity of the customer population immediately, but building up the data
this way can be a viable option.

HANDLING ORGANIZATIONAL

C H A N G E

It would be nice if everyone in an organization would cheerily adopt
new processes without any kind of resistance. It would be nice if the
same process would always work for everybody. In practice, that's never
the case. People are invested in their current ways of doing things. They
know what their process is and how to work it; they have the skills to
do it. They feel successful and don't want to hear how they could do

Handling organizational change 433

things better. Or, if they are not successful, they often feel too much
under the gun to be open to new processes. Adopting a new process is
hard because people have to rethink the ways they do things and take
on new procedures without any guarantee that they'll be happier.

Any company has a core consisting of the products that the com-
pany was built around and that make a lot of the company's money.
Then there are the outlying parts of the company,
developing newer, unproven products. It's common
for the outlying parts of a company to adopt a new
approach first. They are less invested in standard
ways of doing things, want to create something new,
and haven't built up a tradition of how to do things
—in fact, they are often reacting against the core company's tradi-
tions. These outlying groups are often the first to try new techniques
and processes. Only after the techniques have proved themselves do
they start to be adopted by more central parts of the company.

As the new processes move into the core of the company, there
will be more resistance, and the processes will be modified and adapt-
ed to the company's culture and approach. Techniques will be picked
out and put into the context of the existing process; techniques will be
renamed and reworked to fit with the organizational structure. People
decide redesigned sequences are too hard and do storyboards
instead—but they achieve the same intent. People decide not to draw
a User Environment Design explicitly but lay out their UI windows
and draw links between them so they can see their system's structure.
People adopt Contextual Inquiry as a standard part of development
while strenuously denying they are doing anything new. Changes of
this sort are inevitable—you should expect to reevaluate and iterate
the process continually as it spreads through an organization. But
don't lose the core of the process as you go. It's not okay to talk only
to your own salespeople or customer representatives instead of to cus-
tomers directly. It's not okay to design with no data at all. Look at the
intent of each technique in the process, and maintain that intent
within your organizational context.

If you're trying to introduce new techniques to the organization as
an individual contributor, recognize the difficulty of making change
and work from the bottom up (Allen 1995). Don't try to start on the
most important project your organization has; start with a small,
focused problem. Start with a friendly team that wants to try new

Change happens from the

outside in and from the

bottom up

434 Chapter 20 Putting It into Practice

Every project tests the

credibility of a new

approach

things. Start with individual techniques—interviewing, for example—
and build up from there into more of the complete design process.

Make an ally of a friendly manager and ensure that
person knows what you're doing to introduce the
techniques. Get a design room and paper it with
customer data to increase visibility and curiosity.
Remember that everything you do will add to the
credibility of the new approach or destroy it. Make

sure you start with something you can be successful at. And dont get
too evangelistic. People don't like to be preached at.

If you're introducing new processes as a manager, recognize that
the new ways of working will call on different skills—they will change
the job that people do. Some people won't like this. Engineers tend to
go into software because they like inventing cool things, coding them
up, and shipping them. Some will decide it's okay for someone else to
do the work of understanding the customers and designing for
them—the engineer will code whatever they design because his inter-
est and challenge is in designing the implementation. Others won't
like to be constrained, won't be happy in the new organization, and
will ultimately leave.

Other forms of resistance will show up, too. Usability experts are
often the champions of contextual techniques because they are tired of

being asked to apply Band-Aids to broken products.

Include the people who

might think their roles are

being usurped

But when they aren't driving the change, they may
object to others redefining their work for them.
Usability experts are comfortable with lab tech-
niques and quantitative measurements; moving to
qualitative field techniques may be a big change. IT

departments may find that the identified customer representatives
don't like developers talking to customers directly—put them on the
team so they don't feel left out of the loop. And IT departments that
place developers in the customer organization may find that they like
doing quick fixes to each problem as it comes up. It doesn't require a
lot of planning and the rewards are immediate. Moving to a process
that expects them to look at the whole department's work may seem
like overhead with no immediate return.

On the other hand, you want to look for the people who may not
have stood out in the past, but who will be able to pick up and excel at
the new skills. We've found that people such as those in documentation

Handling organizational change 435

Try to measure the true
costs of not designing
from data

who have not stood out in traditional development have insight into
work practice, are able to interview and see design implications, and can
build up a vision for a synthetic corporate response. These people will
move into more prominent positions as their skills become more desir-
able. Expect some organizational disruption as people search for the
right new role for themselves.

Because a customer-centered process puts design up front, people s
initial reaction will be that it takes longer. Talk about what true time
costs are—there's a lot of deciding, arguing, redecid-
ing, and deciding again when there's no real data to
base decisions on. Remember that a customer-
centered process will replace some of the require-
ments specification work you currently do. Show
how the deliverables of Contextual Design feed or
replace the deliverables expected of your teams. And do as one manag-
er does when people tell her it will take too long to get customer data:
she asks, "When do you need the results by?"—and then manages the
process to deliver results to that date.

There are some real time sinks inherent in customer-centered
approaches that you can do something to overcome. For commercial
companies, setting up customer visits can be time-
consuming when there are no procedures or organi-
zation in place for it. There may be an existing orga-
nization that can take on the role—marketing might
do it, or you may be able to build on your process
for recruiting field test sites or usability test users. Your sales and mar-
keting organization, or your internal customer representative, may
adopt the attitude that access to the customers is their responsibility
and keep the design team away. Management can change attitudes by
stating the expectations for adopting customer-centered design. (Wil-
son et al. [1997] has a further discussion of the practical difficulties of
achieving greater user involvement.)

Introducing change to an organization is possible, either as an
individual contributor or as a manager. But from either position, you
have to deal with the reactions people will have and the roadblocks
they will put in the way. Recognize the issues and deal with them as
they come up to make change happen. Measure your success not by
how far you are from the end state you can imagine, but by the
change youVe introduced in peoples daily work practice. Every new

Get logistical problems

out of peoples way

436 Chapter 20 Putting It into Practice

technique or expectation you put in place is a success. If your teams
now expect to gather customer data when before they did not, it's a
success even if they aren't gathering as much or using it as well as you
would like. And remember that changing an organization takes
time—two years to introduce a new technique into an organization so
that it becomes part of the culture.

D E S I G N I N G T H E D E S I G N P R O C E S S

We've discussed customer-centered design all through this book—
how to understand the customer and design to their needs. Underly-
ing all these conversations has been the assumption that the design
process itself is a topic for design. The ability to see, manipulate, and
design a process for delivering systems is a fundamental skill for any-
one trying to change the way an organization works. Throughout this
book we've discussed the underlying rationale for the different parts of
Contextual Design, both to show why it has its current structure and
to guide you in adapting it to your needs.

Designing your design process is just another exercise in customer-
centered design. Your users are the people who make it possible to cre-

ate a system: engineers, marketers, analysts, docu-

Create an organization

that knows how to

manage its own processes

mentation people, usability people, and others. The
organization they are a part of, their attitudes to-
ward the design task, and the way they approach the
job are all elements of their work practice that you
must account for. Just as with any design, you are

looking for the optimum match to this work practice—the maximum
improvement to their way of working that they can successfully
adopt. And you'll be patient because you know that true transforma-
tion happens over successive steps, each one incremental, but adding
up to radical changes in the way people work.

As you introduce new processes, you have the opportunity to cre-
ate process awareness in your organization. Continuous evaluation and
iteration of the processes you use will make the processes people use a
topic of conversation. And that will liberate people by giving them
control over the processes they live in.

Contextual Design is the result of such an inquiry into the process
of systems design. It balances the need of an engineering organization

Designing the design process

to produce a result in a given time frame against the need of the
design team to really understand their customers and how they work.
It provides a structure concrete enough that people know what to do
when they come into work in the morning, but with freedom enough
for people to be creative. Take it, adapt it, and try it out on your own
problems. Your competitors are using processes like this to develop
their new systems. You can, too.

K A R EN A N D INGRID' S S T O R Y

Last year a small pharmaceutical research lab in our company asked for a team to design
some software to run their work process. This lab was new, and many of the people we were
supporting had only been doing the work a few months. Because they did not have established
ways of working, they were open to our investigating how they did their jobs and ways their
work could be changed. However, the team and the lab were both on a right schedule. We
needed to deliver a working system in three months.

As two of our company's trained experts in Contextual Design, we were excited and a bit
overwhelmed by this opportunity. Part of our strategy for getting the Contextual Design fin-
ished quickly was to have several team members who were already trained in Contextual
Design. We had two developers who were already fully trained, two who were not trained (and
whom we only minimally trained), and a project leader who participated fully in the training.
Two of our customers were also involved peripherally and received some training.

The system would have only four direct users, and we interviewed all of them. The eus-
tomers learned a lot about their jobs through the interviews and consolidations. We consoli-
dated some of the data with the users so they would understand where the data and designs
came from and could participate in visioning the new system.

To reduce the time necessary for the Contextual Design process, we consolidated only
three models—the affinity, the How model, and the sequences. We then visioned and made
redesigned sequence models (which were a precursor to storyboards). Based on these, we built
a User Environment Design for the new system. Our users got very excited about the User
Environment Design. They found they could see their work process in this model and could
see how the system would support the process and the different roles in the organization. In
fact, the managers of the lab had a number of conversations about their work practice while
walking the User Environment model.

The UI design and object modeling went forward in parallel once we had the User Envi-
ronment Design in place. For the UI, we built paper prototypes and did three rounds of testing
(UI interviews) on them before moving to online prototypes. We used the redesigned sequences
and User Environment Design to develop use cases, using the focus areas on the O

438 Chapter 20 Putting It into Practice

User Environment to identify potential objects, We kept the User Environment Design and
use cases synchronized pretty well until we got to coding.

The customers are excited and involved and used our data to help them see how to
improve their own processes. Their new system actually eliminated a large portion of the work
one person was doing. She spent a lot of time reformatting files as part of analyzing them.
Now, she can do this analysis directly and spend this saved time on other projects.

For this focused project, the process took us eight weeks full-time, from initial data gath-
ering through the object modeling and UI design. The Contextual Design portion took only
five weeks, ü

Afterword

We said in Chapter 5 that any domain of knowledge tends to
generate words that communicate the thoughts and concepts

important to that domain. These words become the vehicle for com-
munication between people, but they also frame and limit what we
think.

Our own field is full of such words: usability engineer, software
developer, human factors engineer, user interface designer. When we
use these concepts to help us identify and promote the skills necessary
to deliver useful systems, they serve us well; but when they lead us to
balkanize our organizations, separating the functions into groups fo-
cused only on their own part of the problem, they become stumbling
blocks.

I started in this industry as a liaison between customer service and
engineering. From this position I learned firsthand how different the
two points of view are and how difficult it is to bridge the gulf. There
is no good way to explain to an extremely competent database expert
why his technically sophisticated three-phase commit algorithm is
simply beside the point given the reality of specific customer needs.
Even when there's a clear need to introduce new ways of working,
making change happen is another story. People are helpless to adopt
new ways of working unless they know of available alternatives and
have the skill to put them into action. My first development work was
on data dictionaries, which had (at the time) the distinction of being
almost the only point of integration between development tools. Con-
sistent use of the dictionary would make or break the integration
among tools, but no one had any idea how to get the different groups

Afterword

to agree. I naively took the problem on and had no trouble generating
interest in solving the problem—in fact, I ended up with representa-
tives of 14 teams in a room and not the least idea what to do with
them. The idea that an engineer should learn how to manage a room
as a basic tool of the trade was foreign to the expectations of the time,
as it is still.

Just as our language tends to compartmentalize our organizations,
so it tends to compartmentalize the development process itself. "Re-
quirements analysis," or "needs analysis"—whatever term is currently
fashionable—splits the initial task of determining what a system will
be from the rest of development. In doing so, it gives developers a rea-
son for thinking "It's not my job. It's marketing's job—or the analysts'
job—or the customers' job to tell us what they want." But it's not a
job that can be done in isolation. Black-box design is a useful imple-
mentation strategy but not a good approach to organizational design.
We need development expertise involved in understanding the cus-
tomer's problems, and we need the other functions involved in under-
standing how to turn the solution to these problems into a system
structure that works for the user.

Much of the work that Karen and I have done together has fo-
cused on how to put the techniques, process tools, and interpersonal
tools into the hands of project teams so that they can solve their own
problems. Contextual Inquiry hit me at just the right time—I had re-
cently completed a round of customer visits for a product I was work-
ing on, using traditional interviews and discussions, so I recognized
the idea as stunningly obvious on the one hand and yet totally foreign
to the accepted way of gathering product requirements on the other.
But I wasn't interested in the technique to give it away—as a project
leader, I wanted it for myself and my team, and I wanted to build it
up into a rational way of designing products. So we've always ap-
proached the process not as an add-on, or a tool for those with spe-
cialized expertise, but as a way to get the basic job of design done.

We've had to learn along the way that what makes a process ratio-
nal differs from organization to organization and from team to team.
Whether you're designing what you'll do for the next hour or how
you'll run a two-year project, you can't get out of process design. Con-
textual Design is the raw material for designing a workable process.
We've had the privilege of working with teams that learned how to

Afterword 441

manage and reinvent their own processes, picking up the customer-
centered techniques while inventing and integrating new approaches
and techniques along the way. We've distributed some of their stories
throughout the book. These teams have taught us what is possible,
and for that, we are grateful.

Hugh Beyer

This page intentionally left blank

Readings and Resources

P E R S P E C T I V E S ON THE
C U S T O M E R - C E N T E R E D APPROACH

There are many people writing about a customer-centered approach
to systems design, some focusing on contextual techniques, some
looking at larger issues. Here are a few different perspectives on the
topic and the issues.

Constantine, L. 1995a. Constantine on Peopleware. Englewood Cliffs, NJ:
Prentice Hall.

Greenbaum, J., and M. Kyng, eds. 1991. Design at Work: Cooperative Design
of Computer Systems. Mahwah, NJ: Lawrence Erlbaum Associates.

Grudin, J. 1990. "Interface." Proceedings of the Conference on Computer-
Supported Cooperative Work, October 7-10, Los Angeles, CA, p. 269.
New York: ACM

Kapor, M. 1991. "A Software Design Manifesto: Time for a Change." Dr.
Dobb's Journal 172: 62-68 (Jan).

Landauer, T. 1996. The Trouble with Computers. Cambridge, MA: MIT Press.

Norman, D. A., and S. W. Draper, eds. 1986. User Centered System Design.
Mahwah, NJ: Lawrence Erlbaum Associates.

Potts, C. 1995. "Invented Requirements and Imagined Customers: Require-
ments Engineering for Off-the-Shelf Software." Proceedings of the Interna-
tional Symposium on Requirements Engineering, pp. 128-130. New York:
IEEE Press.

Rasmussen, J., A. M. Pejtersen, L. P. Goodstein. 1994. Cognitive Systems En-
gineering New York: John Wiley & Sons.

Winograd, T., ed. 1996. Bringing Design to Software. Reading, MA: Addison-
Wesley.

444 Readings and Resources

PHILOSOPHICAL BACKGROUND

Though it's not necessary to understand the techniques, Contextual
Design is based on philisophical and psychological principles that
guide how to gather effective data and how to use that data to build
an understanding of what to design. For those who are interested,
here are some of the fundamental works that shed light on Contextual
Design.

Fowler, T. 1876. 77?̂ Elements of Inductive Logic, 3d ed. Oxford: Clarendon
Press.

Glaser, B., and A. Strauss. 1967. The Discovery of Grounded Theory: Strategies
for Qualitative Research. Chicago: Aldine Publishing Company.

Goffman, E. 1959. The Presentation of Self in Everyday Life. Garden City,
NY: Doubleday

Hutchins, E. 1995. Cognition in the Wild. Cambridge, MA: MIT Press.

Nardi, B. 1996. Context and Consciousness: Activity Theory and Human-
Computer Interaction. Cambridge, MA: MIT Press.

Polanyi, M. 1958. Personal Knowledge: Towards a Post-Critical Philosophy.
Chicago: University of Chicago Press.

. 1967. The Tacit Dimension. London and New York: Routledge &
Kegan Paul.

Whiteside, J., and D. Wixon. 1988. "Contextualism as a World View for the
Reformation of Meetings." Proceedings of the Conference on Computer-
Supported Cooperative Work, September 26-28, Portland, OR, p. 369.

Winograd, T., and E Flores. 1986. Understanding Computers and Cognition.
Norwood, NH: Ablex.

A P P R O A C H E S TO WORK MODELING

Modeling the way people work for the purpose of design is a problem
as old as software engineering. Here are some approaches to represent-
ing work that others have taken.

Clement, A. 1990. "Cooperative Support for Computer Work: A Social Per-
spective on the Empowering of End Users." Proceedings of the Conference
on Computer-Supported Cooperative Work, October 7-10, Los Angeles,
CA, p. 223. New York: ACM.

Readings and Resources

Easterbrook, S. 1993. "Domain Modeling with Hierarchies of Alternative
Viewpoints." Proceedings of the 1993 IEEE International Symposium on
Requirements Engineering, January 4-6, San Diego, CA, p. 65. Los
Alamitos, CA: IEEE Computer Society Press.

Hughes, J., J. O'Brien, T. Rodden, M. Rouncefield, and I. Sommerville.
1995. "Presenting Ethnography in the Requirements Process." Proceed-
ings of the Second IEEE International Symposium on Requirements Engi-
neering, March 27-29, York, England. Los Alamitos, CA: IEEE Com-
puter Society Press.

Jackson, ML, and P. Zave. 1993. "Domain Descriptions." Proceedings of the
1993 IEEE International Symposium on Requirements Engineering, Janu-
ary 4-6, San Diego, CA, p. 56. Los Alamitos, CA: IEEE Computer So-
ciety Press.

Johnson, P., et al. 1988. "Task-Related Knowledge Structures: Analysis,
Modeling and Application." In People and Computers IV, eds. D. M.
Jones and R. Winder, pp. 35-62. Cambridge; New York: Cambridge
University Press.

Suchman, L. 1989. Plans and Situated Actions. Cambridge: Cambridge Uni-
versity Press.

Suchman, L., ed. 1995. "Representations of Work." Communications of the
ACMISpecial issue 38(9) (Sep).

Yu, E. 1993. "Modelling Organizations for Information Systems Require-
ments Engineering." Proceedings of the 1993 IEEE International Sympo-
sium on Requirements Engineering, January 4-6, San Diego, CA, p. 34.
Los Alamitos, CA: IEEE Computer Society Press.

C U S T O M E R - C E N T E R E D DESIGN A S PART OF
SOFTWARE DEVELOPMENT

Understanding customers and designing for them is just one part of
the overall systems lifecycle. It has to fit into the overall work of soft-
ware development and has to fit the organizations that design and
build software. The following readings discuss how customer-centered
techniques fit into the larger context.

Beyer, H. 1993. "Where Do the Objects Come From?" Software Develop-
ment 93 Fall Proceedings, August, Boston, MA.

Bustard, D., and T. Dobbin. 1996. "Integrating Soft Systems and Object-
Oriented Analysis." Proceedings of the Second International Conference on

Readings and Resources

Requirements Engineering, April 15-18, Colorado Springs, C O , p. 52.
Los Alamitos, CA: IEEE Computer Society Press.

Constantine, L. 1996. "Usage-Centered Software Engineering: New Models,
Methods, and Metrics." Proceedings of the 1996 International Conference
on Software Engineering: Education & Practice, January 24-27 , Dunedin,
New Zealand: New Zealand Computer Society.

Goguen, J. 1996. "Formality and Informality in Requirements Engineering."
Proceedings of the Second International Conference on Requirements Engi-
neering, April 15-18, Colorado Springs, CO, p. 102. Los Alamitos, CA:
IEEE Computer Society Press.

Hefley, W., and Romo, J. 1994. "New Concepts in Engineering Processes for
Developing Integrated Task Environments." Proceedings of the IEEE
1994 National Aerospace and Electronics Conference (NAECON 1994).

Hefley, W., et al. 1994. "Integrating Human Factors with Software Engineer-
ing Practices." Proceedings of the Human Factors and Ergonomics Society,
39th Annual Meeting, Nashville, T N , October 2 4 - 2 8 , pp. 315-319 .
Santa Monica, CA: Human Factors and Ergonomics Society.

Holtzblatt, K., and H. Beyer, eds. 1995. "Requirements Gathering: The
Human Factor." Communications of the ACMISpecial issue 38(5) (May).

Hughes, J., J. O'Brien, T. Rodden, M. Rouncefield, and I. Sommerville.
1995. "Presenting Ethnography in the Requirements Process." Proceed-
ings of the Second IEEE International Symposium on Requirements Engi-
neering, March 27-29, York, England. Los Alamitos, CA: IEEE Com-
puter Society Press.

Rosson, M., and Carroll, J. 1995. "Integrating Task and Software Develop-
ment for Object-Oriented Applications." CHI 95 Conference Proceed-
ings, May 7 - 1 1 , Denver, C O , p. 377. New York: ACM.

Sommerville, I., T. Rodden, P. Sawyer, R. Bentley, and M. Twidale. 1993.
"Integrating Ethnography into the Requirements Engineering Process."
Proceedings of the 1993 IEEE International Symposium on Requirements
Engineering, January 4 -6 , San Diego, CA, p. 165. Los Alamitos, CA:
IEEE Computer Society Press.

Readings and Resources

A P P R O A C H ES T O PAPE R PROTOTYPING
Creating rapid, low-fidelity prototypes in paper and cardboard has a
history and literature derived from the Participatory Design move-
ment. Here are some discussons of paper prototyping and Participa-
tory Design in general.

Kyng, M. 1988. "Designing for a Dollar a Day." Proceedings of the Conference
on Computer-Supported Cooperative Work, September 26-28, Portland,
OR, p. 178.

Müller, M. 1991. "PICTIVE—An exploration in participatory design."
Human Factors in Computing Systems CHI '91 Conference Proceedings,
pp. 225-231.

Müller, M., and S. Kuhn, eds. 1993. "Participatory Design." Communica-
tions of the ACMISpecial issue 36(4) (Jun).

Schuler, D., and A. Namioka, eds. 1993. Participatory Design: Principles and
Practices. Mahwah, NJ: Lawrence Erlbaum Associates.

Wulff, W., S. Evenson, and J. Rheinfrank. 1990. "Animating Interfaces."
Proceedings of the Conference on Computer-Supported Cooperative Work,
October 7-10, Los Angeles, CA, p. 241. New York: ACM.

C A S E HISTORIES

Here are some case histories that use contextual techniques and
customer-centered design on different practical problems.

Moll-Carrillo, H., G. Salomon, M. Marsh, J. Suri, and P. Spreenberg. 1995.
"Articulating a Metaphor through User-Centered Design." CHI '95
Conference Proceedings, May 7-11, Denver, CO, p. 566. New York:
ACM.

Lundell, J., and S. Anderson. 1995. "Designing a 'Front Panel' for Unix:
The Evolution of a Metaphor." CHI '95 Conference Proceedings, May
7-11, Denver, CO, p. 573. New York: ACM.

Coble, J., J. Karat, and M. Kahn. 1997. "Maintaining a Focus on User Re-
quirements throughout the Development of Clinical Workstation Soft-
ware." CHI '97 Conference Proceedings, March 22-27, Atlanta, GA, p.
170. New York: ACM.

448 Readings and Resources

Wilson, S., M. Bekker, P. Johnson, and H. Johnson. 1997. "Helping and
Hindering User Involvement—A Tale of Everyday Design." CHI '97
Conference Proceedings, March 22-27, Atlanta, GA, p. 178. New York:
ACM.

Wixon, D., and J. Ramey, eds. 1996. Field Methods Case Book for Product
Design. New York: John Wiley & Sons.

References

Allen, C. D. 1995. "Succeeding as a Clandestine Change Agent." Communi-

cations oftheACMG38(5).

Beyer, H. 1993. "Where Do the Objects Corne From?" Software Develop-

ment V3 Fall Proceedings, August, Boston, MA.

. 1994. "Calling Down the Lightning." IEEE Software 11(5): 106.

Boas, M., and S. Chain. 1977. Big Mac: The Unauthorized Story of McDon-

ald's, New York: The New American Library.

Boehm, B. W. 1976. "Software Engineering." IEEE Transactions on Comput-

ers 25 {\2):\226-\24\.

Brassard, M. 1989. Memory Jogger Plus. Methuen, MA: GOAL/QPC.

Bustard, D., and T. Dobbin. 1996. "Integrating Soft Systems and Object-
Oriented Analysis." Proceedings of the Second International Conference on

Requirements Engineering, April 15-18, Colorado Springs, C O , p. 52.
Los Alamitos, CA: IEEE Computer Society Press.

Carlshamre, P., and J. Karisson. 1996. "A Usability-Oriented Approach to
Requirements Engineering." Proceedings of the Second International Con-

ference on Requirements Engineering, April 15-18, Colorado Springs,
C O , p. 145. Los Alamitos, CA: IEEE Computer Society Press.

Carter, J., Jr. 1991. "Combining Task Analysis with Software Engineering
for Designing Interactive Systems." In Taking Software Design Seriously,

ed. John Karat, p. 209. New York: Academic Press.

Catledge, L., and C. Potts. 1996. "Collaboration during Conceptual De-
sign." Proceedings of the Second International Conference on Requirements

Engineering, April 15-18, Colorado Springs, C O , p. 182. Los Alamitos,
CA: IEEE Computer Society Press.

Chin, G., Jr., M. Rosson, and J. Carroll. 1997. "Participatory Analysis:
Shared Development of Requirements from Scenarios." CHI '97 Con-

ference Proceedings, March 22—21, Atlanta, GA, p. 162. New York:
ACM.

References

Clement, A. 1990. "Cooperative Support for Computer Work: A Social Per-
spective on the Empowering of End Users." Proceedings of the Conference

on Computer-Supported Cooperative Work, October 7-10, Los Angeles,
CA, p. 223. New York: ACM.

Coble, J., J. Karat, and M. Kahn. 1997. "Maintaining a Focus on User Re-
quirements throughout the Development of Clinical Workstation Soft-
ware." CHI '97 Conference Proceedings, March 22-27 , Atlanta, GA, p.
170. New York: ACM.

Constantine, L. 1992. "Getting the User Interface Right: Basic Principles."
Software Development '92 Fall Proceedings, September, Boston, MA.

. 1994a. "Persistent Usability: A Multiphasic User Interface Architec-
ture for Supporting the Full Usage Lifecycle." In OzCHI 94 Proceedings,

eds. S. Howard and Y. Leung. Melbourne.

. 1994b. "Up the Waterfall." Software Development 2(1) (Jan).

. 1995a. Constantine on Peopleware. Englewood Cliffs, NJ: Prentice
Hall.

. 1995b. "Essential Modeling: Use Cases for User Interfaces." ACM

interactions 2(2) (Apr):34—46.

. 1996. "Usage-Centered Software Engineering: New Models, Meth-
ods, and Metrics." Proceedings of the 1996 International Conference on

Software Engineering: Education & Practice, January 24-27 , Dunedin,
New Zealand: New Zealand Computer Society.

Curtis, B., and B. Hefley. 1992. "Defining a Place for Interface Engineer-
ing." IEEE Software (Mar):84-86.

. 1994. "A WIMP No More: The Maturing of User Interface Engi-
neering." ACM interactions 1(1):22—34.

Daley, E. 1977. "Management of Software Development." IEEE Transactions

on Software Engineering 3(3):229-242.

Davis, A. 1993. Software Requirements: Objects, Functions, and States. Engle-
wood Cliffs, NJ: Prentice Hall.

Denning, P., and P. Dargan. 1996. "Action-Centered Design." In Bringing

Design to Software, ed. T. Winograd, p. 116. Reading, MA: Addison-
Wesley.

References

Easterbrook, S. 1993. "Domain Modeling with Hierarchies of Alternative
Viewpoints." Proceedings of the 1993 IEEE International Symposium on

Requirements Engineering, January 4 - 6 , San Diego, CA, p. 65 . Los
Alamitos, CA: IEEE Computer Society Press.

Ehn, P. 1988. Work-Oriented Design of Computer Artifacts. Falkoping, Swe-
den: Gummessons. International distribution by Almqvist & Wiksell
International; also Coronet Books, Philadelphia, PA.

Ehn, P., and M. Kyng. 1991. "Cardboard Computers: Mocking-it-up or
Hands-on the Future." In Design at Work, eds. J. Greenbaum and M.
Kyng, p. 169. Mahwah, NJ: Lawrence Erlbaum Associates.

Fisher, B. A. 1980. Small Group Decision Making, 2d ed. New York: Mc-
Graw-Hill.

Fowler, T. 1876. The Elements of Inductive Logic, 3d ed. Oxford: Clarendon
Press.

Glaser, B., and A. Strauss. 1967. The Discovery of Grounded Theory: Strategies

for Qualitative Research. Chicago: Aldine Publishing Company.

Goffman, E. 1959. The Presentation of Self in Everyday Life. Garden City,
NY: Doubleday.

Goguen, J. 1996. "Formality and Informality in Requirements Engineering."
Proceedings of the Second International Conference on Requirements Engi-

neering, April 15-18, Colorado Springs, C O , p. 102. Los Alamitos, CA:
IEEE Computer Society Press.

Goguen, J., and C. Linde. 1993. "Techniques for Requirements Elicitation."
Proceedings of the 1993 IEEE International Symposium on Requirements

Engineering, January 4-6, San Diego, CA, p. 152. Los Alamitos, CA:
IEEE Computer Society Press.

Gomaa, H. 1983. "The Impact of Rapid Prototyping on Specifying User Re-
quirements." ACM SIGSOFTSoftware Engineering Notes 8(2) (Apr).

Grandin, T 1996. Thinking in Pictures: And Other Reports from My Life with

Autism. Garden City, NY: Doubleday.

Greenbaum, J., and M. Kyng, eds. 1991. Design at Work: Cooperative Design

of Computer Systems. Mahwah, NJ: Lawrence Erlbaum Associates.

References

Grudin, J. 1990. "Interface." Proceedings of the Conference on Computer-

Supported Cooperative Work, October 7-10, Los Angeles, CA, p. 269.
New York: ACM.

Hansen, A. 1997. "Reflections on I/Design: User Interface Design at a Start-
up." CHI 97 Conference Proceedings, March 22 -27 , Atlanta, G A, p.
178. New York: ACM.

Häuser, J. R., and D. Clausing. 1988. "The House of Quality." Harvard

Business Review 66(3): 63-73 .

Hefley, W. E. 1993. "The Cobbler's Children: Applying Total Quality Man-
agement to Business Process Improvement, Information Engineering
and Software Engineering." ACM Software Engineering Notes 18(4):
19-25.

. 1996. "Usability Trends in Government." Keynote address at NIST
Symposium on Usability Engineering: Industry-Government Collabora-
tion for System Effectiveness and Efficiency, Gaithersburg, M D , Febru-
ary 26.

Hefley, W., and Romo, J. 1994. "New Concepts in Engineering Processes for
Developing Integrated Task Environments." Proceedings of the IEEE

1994 National Aerospace and Electronics Conference (NAECON1994).

Hefley, W., et al. 1994. "Integrating Human Factors with Software Engineer-
ing Practices." Proceedings of the Human Factors and Ergonomics Society,

39th Annual Meeting, Nashville, T N , October 24-28 , pp. 315-319.
Santa Monica, CA: Human Factors and Ergonomics Society.

Holtzblatt, K., and S. Jones. 1995. "Conducting and Analyzing a Contextual
Interview." In Readings in Human-Computer Interaction: Toward the Year

2000 2d, eds. R. M. Baecker, J. Grudin, W. A. S. Buxton, S. Greenberg.
San Francisco: Morgan Kaufman, p. 241.

Holtzblatt, K., and H. Beyer, eds. 1995. "Requirements Gathering: The
Human Factor." Communications of the ACMISpecial issue 38(5) (May).

Hsia, P., C. Hsu, D. Kung, and L. Holder. 1996. "User-Centered System
Decomposition: Z-Based Requirements Clustering." Proceedings of the

Second International Conference on Requirements Engineering, April
15-18, Colorado Springs, C O , p. 126. Los Alamitos, CA: IEEE Com-
puter Society Press.

References

Hughes, J., J. O'Brien, T. Rodden, M. Rouncefield, and I. Sommerville.
1995. "Presenting Ethnography in the Requirements Process." Proceed-

ings of the Second IEEE International Symposium on Requirements Engi-

neering March 27-29, York, England. Los Alamitos, CA: IEEE Com-
puter Society Press.

Hutchins, E. 1995. Cognition in the Wild. Cambridge, MA: MIT Press.

Jackson, M., and P. Zave. 1993. "Domain Descriptions." Proceedings of the

1993 IEEE International Symposium on Requirements Engineering, Janu-
ary 4 -6 , San Diego, CA, p. 56. Los Alamitos, CA: IEEE Computer So-
ciety Press.

Jacobson, I., M. Christerson, P. Jonsson, and G. Overgaard. 1992. Object-

Oriented Software Engineering: A Use Case Driven Approach. Reading,
MA: Addison-Wesley.

Johnson, P., et al. 1988. "Task-Related Knowledge Structures: Analysis,
Modeling and Application." In People and Computers IV eds. D. M.
Jones and R. Winder, pp. 35-62 . Cambridge; New York: Cambridge
University Press.

Kapor, M. 1991. "A Software Design Manifesto: Time for a Change." Dr.

DobbsJournal 172:62-68 (Jan).

Kawakita, J. 1982. The Original KJMethod. Tokyo: Kawakita Research Insti-
tute.

Keil, M., and E. Carmel. 1995. "Customer-Developer Links in Software De-
velopment." Communications of the ACM 38(5):33-44.

Keller, M., and K. Shumate. 1992. Software Specification and Design. New
York: John Wiley &c Sons.

Kelley, D., and B. Hartfield. 1996. "The Designer's Stance." In Bringing De-

sign to Software, ed. T. Winograd, p. 116. Reading, MA: Addison-Wesley.

Kensing, E, and K. H. Madsen. 1991. "Generating Visions: Future Work-
shops and Metaphorical Design." In Design at Work, eds. J. Greenbaum
and M. Kyng, p. 155. Mahwah, NJ: Lawrence Erlbaum Associates.

Kyng, M. 1988. "Designing for a Dollar a Day." Proceedings of the Conference

on Computer-Supported Cooperative Work, September 26-28 , Portland,
OR, p. 178.

References

Landauer, T. 1996. The Trouble with Computers. Cambridge, MA: M I T
Press.

Long, J., S. Hakiel, B. Hefley, L. Damodoran, and K. Y. Lim. 1994. "Guilty
or Not Guilty? Human Factors Structured Methods on Trial." Human

Factors in Computing Systems—CHI '94 Conference Companion, Boston,

MA, April 24-28 , pp. 181-182. New York: ACM.

Loucopoulos, P., and V. Karakostas. 1995. System Requirements Engineering.

New York: McGraw-Hill.

Lübars, M., C. Potts, and C. Richter. 1993. "A Review of the State of the
Practice in Requirements Modeling." Proceedings of the 1993 IEEE In-

ternational Symposium on Requirements Engineering, January 4 - 6 , San
Diego, CA, p. 2. Los Alamitos, CA: IEEE Computer Society Press.

Lundell, J., and S. Anderson. 1995. "Designing a 'Front Panel' for Unix:
The Evolution of a Metaphor." CHI '95 Conference Proceedings, May
7 - 1 1 , Denver, C O , p. 573. New York: ACM.

Martin, C. E., W. E. Hefley, D. J. Bristow, and D. J. Steele. 1992. "Team-
Based Incremental Acquisition of Large-Scale Unprecedented Systems."
Policy Sciences 25:5 7—7 5.

Martin, J., and J. Odell. 1992. Object-Oriented Analysis and Design. Engle-
wood Cliffs, NJ: Prentice Hall.

McClelland, I., B. Taylor, and B. Hefley. 1996. "User-Centered Design Prin-
ciples: How Far Have They Been Industrialised?" ACM SIGCHI Bul-

letin 28(4) :23-25.

McMenamin, S., and J. Palmer. 1984. Essential Systems Analysis. Englewood
Cliffs, NJ: Yourdon Press.

Moll-Carrillo, H., G. Salomon, M. Marsh, J. Suri, and P. Spreenberg. 1995.
"Articulating a Metaphor through User-Centered Design." CHI '95

Conference Proceedings, May 7 - 1 1 , Denver, C O , p. 566. New York:
ACM.

Moore, G. 1991. Crossing the Chasm: Marketing and Selling Technology Prod-

ucts to Mainstream Customers. New York: HarperBusiness.

Müller, M. 1991. "PICTIVE—An exploration in participatory design."
Human Factors in Computing Systems CHI '91 Conference Proceedings,

pp. 225-231 .

References

Muller, M., and S. Kuhn, eds. 1993. "Participatory Design." Communica-

tions oftheACM/Special issue 36(4) (Jun).

Müller, M., R. Carr, C. Ashworth, B. Diekmann, C. Wharton, C. Eick-
staedt, and J. Clonts. 1995. "Telephone Operators as Knowledge Work-
ers: Consultants Who Meet Customer Needs." CHI '95 Conference Pro-

ceedings, May 7 - 1 1 , Denver, CO, p. 130. New York: ACM.

Nardi, B. 1996. Context and Consciousness: Activity Theory and Human-

Computer Interaction. Cambridge, MA: M I T Press.

Norman, D. A., and S. W. Draper, eds. 1986. User Centered System Design.

Mahwah, NJ: Lawrence Erlbaum Associates.

Orr, J. 1986. "Narratives at Work—Storytelling as Cooperative Diagnostic
Activity." Proceedings of the Conference on Computer-Supported Coopera-

tive Work, December 3 -5 , Austin, Texas.

Polanyi, M. 1958. Personal Knowledge: Towards a Post-Critical Philosophy.

Chicago: University of Chicago Press.

. 1967. The Tacit Dimension. London and New York: Routledge &£

Kegan Paul.

Potts, C. 1995. "Invented Requirements and Imagined Customers: Require-
ments Engineering for Off-the-Shelf Software." Proceedings of the Inter-

national Symposium on Requirements Engineering, pp. 128—130. New
York: IEEE Press.

Pugh, S. 1991. Total Design. Reading, MA: Addison-Wesley.

Rasmussen, J., A. M. Pejtersen, L. P. Goodstein. 1994. Cognitive Systems En-

gineering. New York: John Wiley & Sons.

Rheinfrank, J., and Evenson, S. 1996. "Design Languages." In Bringing De-

sign to Software, ed. T. Winograd, p. 77. Reading, MA: Addison-Wesley.

Rosson, M., and Carroll, J. 1995. "Integrating Task and Software Develop-
ment for Object-Oriented Applications." CHI '95 Conference Proceed-

ings, May 7 - 1 1 , Denver, C O , p. 377. New York: ACM.

Rumbaugh, J., M. Blaha, W. Premerlani, E Eddy, and W. Lorensen. 1991.
Object-Oriented Modeling and Design. Englewood Cliffs, NJ: Prentice
Hall.

Schon, D. 1983. The Reflective Practitioner. New York: Basic Books.

References

Schuler, D., and A. Namioka, eds. 1993. Participatory Design: Principles and

Practices. Mahwah, NJ: Lawrence Erlbaum Associates.

Sommerville, L, T. Rodden, P. Sawyer, R. Bentley, and M. Twidale. 1993.
"Integrating Ethnography into the Requirements Engineering Process."
Proceedings of the 1993 IEEE International Symposium on Requirements

Engineering, January 4 -6 , San Diego, CA, p. 165. Los Alamitos, CA:
IEEE Computer Society Press.

Suchman, L. 1989. Plans and Situated Actions. Cambridge: Cambridge Uni-
versity Press.

, L., ed. 1995. "Representations of Work." Communications of the

ACMISpecial issue 38(9) (Sep).

Sumner, T. 1995. "The High-Tech Toolbelt: A Study of Designers in the
Workplace." CHI 95 Conference Proceedings, May 7—11, Denver, C O , p.
178. New York: ACM.

Terwilliger, R., and P. Poison. 1997. "Relationships between Users' and In-
terfaces' Task Representations." CHI 97 Conference Proceedings, March
22-27, Atlanta, GA, p. 99. New York: ACM.

Whiteside, J., and D. Wixon. 1988. "Contextualism as a World View for the
Reformation of Meetings." Proceedings of the Conference on Computer-

Supported Cooperative Work, September 26-28, Portland, OR, p. 369.

Wilson, S., M. Bekker, P. Johnson, and H. Johnson. 1997. "Helping and
Hindering User Involvement—A Tale of Everyday Design." CHI 97

Conference Proceedings, March 22-27, Atlanta, GA, p. 178. New York:
ACM.

Winograd, T , and F. Flores. 1986. Understanding Computers and Cognition.

Norwood, N H : Ablex.

Winograd, T , ed. 1996. Bringing Design to Sofiware. Reading, MA: Addison-
Wesley.

Wirfs-Brock, R. 1993. "Designing Scenarios: Making the Case for a Use
Case Framework." SmallTalk Report (Nov-Dec).

Wixon, D., and J. Ramey, eds. 1996. Field Methods Case Book for Product

Design. New York: John Wiley & Sons.

References

Wulff, W., S. Evenson, and J. Rheinfrank. 1990. "Animating Interfaces."
Proceedings of the Conference on Computer-Supported Cooperative Work,
October 7-10, Los Angeles, CA, p. 241. New York: ACM.

Yourdon, E., and L. Constantine. 1979. Structured Design. Englewood Cliffs,
NJ: Prentice Hall.

Yu, E. 1993. "Modelling Organizations for Information Systems Require-
ments Engineering." Proceedings of the 1993 IEEE International Sympo-
sium on Requirements Engineering, January 4-6, San Diego, CA, p. 34.
Los Alamitos, CA: IEEE Computer Society Press.

This page intentionally left blank

Index

A
abstract steps in sequences, 173-175
abstract vs. concrete data, 48 -51
access (for people working), 254-255
adjunct members of the design team, 429
affinity diagrams, 23, 151, 154-163

section of, 161
structure of, 155
walking, 201-202 , 275-276

Alans Story, 26
alerts, creating, 263
annotations, informal, 106
Apples LaserWriter 8.4.1 print dialog, 300
application program interfaces (APIs), 357
apprenticeship model (relationship model), 4 2 - 4 6
architect team, 298
artifact model (a work model), 102-107

consolidated, 264-268
consolidating, 178-184
distinctions, 105
personal calendar, 104

artifact presentation, 106, 268
artifacts

collecting during interview, 103—106
copies of used, 107
flow of, 254
grouping, 179
identifying common parts of, 179
informal annotations about, 106
information content of, 105-106
inquiry into, 106-107
movement of, 254-255
presentation of, 106, 268
putting online, 267
and role interaction, 169

artifact structures, 104, 267-268

B
banning words, to force rethinking, 156
birds-eye view of an organization, 95 -96
brainstorming, 276-282
broad work model growth focus, 432
business process redesign, 7 2 - 7 3
business process reengineering (BPR), 144, 215
button bars, in a paper prototype, 395
buttons, 387

C
CAD tool example, 223-224
calendar models, 104, 180
C D . See Contextual Design (CD)
Claris Emailer, 297, 308-309 , 384
Claris Emailer UI, U E D for, 308-309
clients. See customers; users
co-designers, customers as, 371-377, 397-398
coherent business processes, IT and, 144-146
coherent response, 18-19
coherent system design, 13, 148-149, 299 -301 ,

314-315
coherent system work model, 295-306
command keys, 387-388
command-line UI, mapping U E D to, 383-386
commercial products, inquiry for, 69-71
commercial software vendors, 1
common direction, creating, 282-284
communicating

to customers, 206-207
a design to a customer, 368-370
due to the design project, 200
to engineers, 207-209
to groups in the organization, 204-211
to management, 209-210
to marketing, 205-206

460

communicating (continued)

mechanisms for interpersonal, 252
to the organization, 199—212
prototyping as a tool of, 376-377
and role interaction, 169
techniques for, 200-204
to usability groups, 210-211

communication flow
coordinating, 93—94
informal structures for, 94-95
recognizing, 90-95
and roles, 94
strategy for, 94

communication out, 135
communication problems, 246-247
communication techniques, 200—204
completing a design, 410-411
complexity of work, 17-18
concepts, customer, 198
concrete vs. abstract data, 48 -51
concurrent implementation, driving, 361-362
Conference on Computer-Human Interaction

(CHI), 20
configuration management example, 141

annotated UED, 356-357
U E D supporting, 350-351
User Environment mapping to UIs, 380-386
windowing UI prototype, 394

consolidated artifacts, tasks and, 184
consolidated work models, 23 , 146-147, 151. See

also work models
artifact model, 178-184, 264-268
cultural model, 190-196, 240-249
flow model, 163-170, 230-240, 242-243
physical model, 184-190, 249-256
sequence model, 171-178, 256-264, 290
using as deliverables, 209
walking, 202-203

consolidating influences, 192-194
consolidation, 23, 139-149
consolidation process, 197-198, 154
context principle

in Contextual Design, 37
in Contextual Inquiry, 47-51

Contextual Design (CD), 3, 5
definition, 21—25

Index

designing design processes, 415
evolution of, 20-21
and invention, 220-221
key intents of, 418-419
parts of, 22—25
principle of data, 416-417
principle of design thinking, 420-421
principle of the team, 417, 420
principles of, 37-38 , 416-421
process of, 393
putting into practice, 415-438
revealing hidden work structure, 36-39
in software life cyle, 226-227

Contextual Inquiry (CI), 20, 22
into artifacts, 106-107
for commercial products, 69-71
four principles of, 46-64 , 66

for IT projects, 71 -73
for known products, 69-70
for new work domain, 70
in practice, 67-78
principle of context, 47-51
principle of focus, 61—64
principle of interpretation, 56—60
principle of partnership, 51-56
principles of, 41—66
structure of, 64—66

contextual interview, 38
contradictions in, 63
extremely focused tasks, 75
extremely long tasks, 75
intermittent tasks, 74
internal mental processes, 75 -76
nodding in, 63
normal tasks, 73-74
situation, 73 -76
structure, 64 -66
surprises in, 63
uninterruptable tasks, 74-75
who to interview, 76-78

controls (UI), mapping functions to, 387
conventional interview, 64-65
coordinating a product strategy, 358-360
coordination, and communication flow, 93—94
core members of the design team, 429
corporate response, 216

Index 461

designing, 225-291
guiding, 289

creative work flow model, 93
creativity

incorporating diversity in, 218-220
stifling with evaluation, 274

cross-department system consistency, 145
cross-functional team, 13-14, 199

cooperation, 126-127
putting to work, 5

cultural context, explained, 108
cultural influences

attitudes toward money, 195
consolidating, 192-194
frictions repeat across businesses, 191
pervasive, 109-110
recognizing, 111-112

cultural model (a work model), 107-115
consolidated, 240-249
consolidating, 190-196
customer-centered organization, 114
distinctions, 109-110
influence on design, 110
making culture tangible, 112-115
product development organization, 113
recognizing influences, 111-112

current activity, directed by vision, 285
current work pile, 253
customer-centered design, 3-8
customer-centered organization cultural model,

114
customer concepts, 198
customer data. See data
customer focus, strategic, 430-432
customer insights, written record of, 126
customer intents

allowing for, 259-261
finding out, 197

customer practice map, 143
customer profile, 132
customer population, 23, 139
customer representatives, 34
customers. See also organization (company)

as co-designers, 370-377
communicating to, 206-207 , 368-370
as final arbiters, 368

including in design process, 370-371
and IT departments, 33-36 , 144-148
keeping in touch with, 9-10
meaning of (in this book), 2
mindset of, 198
mock-up and test with, 24-25
understanding, 27 -78
variations across, 152

customer strategies, finding, 197
customer structure, 197-198
customer values, 241-245
customer view, single, 151-198

D
data

abstract vs. concrete, 48 -51
as basis for cooperation, 39
the challenge to design from, 16-19, 273-291
innovation from, 213-291
key to getting, 51
from marketing, 30 -33
true involvement in, 127
using to drive design, 229-271
walking, 275-276

data-driven innovation, 216-218
data flow diagramming, 85
data gathering, 29 -39 , 56
data principle of C D , 416-417
deliverables, using models as, 209
demographics, segmenting the market by, 142
design, meaning of (in this book), 3, 29
design decisions within organizations, 10—16
design to development process, 314
design groups, assigning questions to, 10-11
design idea, 57
design process, 22

designing, 415, 436-438
including customers in, 370-371
keeping it open, 212
user environment formalism in, 311-315

design response, levels of, 4
design room, 203-204
design team

basic question, 31
and coders, 428
cross-functional, 13-14, 199

462 Index

design team (continued)

interpretation session, 128-129
members of, 429
in the physical environment, 13-14
putting to work, 4 - 5
responsibilities for, 421-423
sharing members across projects, 429
structure of, 428-430
tasks diagram, 431

design team slogan, 248
design thinking. See thinking (design)
diagnosing a problem, activities in, 173-177
diagramming, 19, 83-84
dialog boxes, 388-389

proliferation of, 338
representing in a paper prototype, 396

direct manipulation functions, 388
diversity, incorporating into design, 218-220
division of work space, 117—118
documentation, U E D and, 361-362
double links between focus areas, 320-321

emergent work practice, 375
engineering departments. See IT departments
enterprise models, 146
evaluation, stifling creativity with, 274
expert/novice relationship model, 55-56
extremely focused tasks, 75
extremely long tasks, 75

F
facilitator, in brainstorming, 278
field research, 56
filing paper, 255
five faces of work, 120-123
floor plan analogy, 303-306
flow of an artifact, 254
flow model (a work model), 89 -96

bird s-eye view of, 95—96
consolidated, 230-240
consolidating, 163-170
for creative work, 93
distinctions, 91
for secretarial work, 92

focus, 61-64
expanding, 62-64
as a principle of C D , 38
as a principle of Contextual Inquiry, 61-64
of a prototype interview, 400-401
setting for Contextual Inquiry, 67 -73
of work model growth, 432

focus areas, 318, 322
and checking UED, 342-343
connected by hidden links, 330
containing only links, 342
external, 323
function added to, 329
going through multiple, 338
hidden, 323
links between, 319-321
paper prototype, 399, 405
purpose of, 318
representing new functions, 329
shipping together, 349
system work model, 306, 310
as tabs, 383
as windows, 383

focusing thought through language, 82—83
focus statements (at interview), 77-78
functions

direct manipulation of, 388
mapping to controls, 387
presenting, 387

functions (in system structure), 302

G
gathering customer data, 29-39 , 56
gathering requirements, 17, 56
graphical languages, 83-85
grounded brainstorming, 277-282
grouping of artifacts, 179
grouping of people (physical environment), 118
grouping Post-it notes to reveal themes, 158—163
groups of designers. See design team
guest/host relationship model, 56

H
hardware requirements, vision and, 286-287
helper (sharing session), 135

Index

hidden work structure, revealing, 36 -39
hypothesis, design, 57

i
inductive reasoning, 151, 154, 197-198. See also

thinking (design)
influences (cultural), 112, 192-193
influences (cultural), ^ c u l t u r a l influences
informal annotations, 106
informal structures of communication flow, 94-95
information content of artifacts, 105-106
Information Technology (IT) departments, 1-2,

9-10, 33-36 , 7 1 - 7 3 , 144-148, 207-209, 423
inquiry. See Contextual Inquiry (CI)
intents of Contextual Design, 418-419
intents (customer/user), 197

achieving more directly, 260
allowing for, 259-261
and sequence model interview, 101

intermittent tasks, 74
internal mental processes, 75 -76
interpersonal issues, managing, 14-15, 2 4 0 - 2 4 1 ,

252
interpretation principle of C D , 38

in a contextual interview, 56—60
in a prototype interview, 398—400

interpretation session, 125-136
goals, 126-128
participant roles 129-134
running, 134-135
sharing session, 135—136
structure, 128-136
team makeup, 128-129

interviewer
interpretation session, 129
point of view of, 61

interviewer/interviewee relationship model, 55
interviews. See also contextual interview; prototype

interview
collecting artifacts during, 103-106
collecting sequences during, 99-101
conventional, 64 -65
designing, 73 -76

intrapersonal triggers, explained, 62
intuition, role of, 35 -36

invention process, explicit, 220-221
involvement in data, 127
IT departments, 1-2, 9-10, 33 -36 , 144-148

207-209, 423
IT developers placed with clients, 34
iterations, 409-410

multiple, 377
with a prototype, 367-377 , 393-411
rapid, 376

IT projects, 71 -73
IT system, 215

j
jargon, 83
jobs. See work

K
Karen and Ingrid s Story, 437
Kelly's Story, 291
key roles, finding, 239
known products, inquiry for, 69 -70

L
language of work, 81-87

and focusing thought, 82 -83
graphical, 83-85
work models as, 84-86

links, 319-321
checking, 342-343
hidden, 330
system structure, 302

lists from brainstorming, 276-277
lists of responsibilities of individuals, 164
low-fidelity prototyping, 393

M
mail handling, sequence model for, 98
mail system UED, 307
mainline conversation, 132
maintenance vs. upgrades (IT projects), 72
management, communicating to, 209-210
managing a design team, 428
map of customer practice, 143
mapping, process, 85

464 Index

mapping functions to UI controls, 387
mapping roles

to individuals, 230
to job functions, 242-243

mapping UEDs to UIs, 379-389
Mardell's Story, 362-363
market

segmenting by demographics, 142
segmenting by work models, 143
single representation of, 140-143

marketing
and design data, 30 -33
vision and, 286

marketing department, 423
communicating to, 205-206
involvement in software life cyle, 226—227

marketing scenarios, providing, 205—206
master/apprentice relationship model, 42—46
mental processes, and contextual interview, 75-76
menus, pull-down, 388, 395
metaphors, using, 269-270
mindset, customer, 198
mock-up and test with customers, 24-25
models. See consolidated work models; work

models
moderator, session, 132-133, 136
money, cultural attitudes toward, 195
movement of artifacts, 254-255
movement of people (physical), 118-119,

186 -189 ,254-255
multiple iterations (testing), 377
multiple perspectives, 127
multiple projects, with one set of models, 429
M.Y.O.B., 384

N
narrow work model growth focus, 432
networked workers, 252
new technology, taking advantage of, 70-71
nonverbal user reactions, 60, 63, 400
normal tasks, 73-74
notes from interpretation meeting, 131
notes (Post-it), 394

first-level, 160
grouping to reveal significance, 158-163
writing, 158-159

o
object modeling, 85
object models

developing, 339-340
and talking to customers, 369

object-oriented UIs, 311-312
office (physical model), 121
one-shot solutions, avoiding, 208, 212
ongoing experience vs. summary, 47 -48
operational policies, 111
ordering supplies, UI for, 374
organization chart, 112
organization (company)

bird's-eye view of, 95-96
communicating to, 199-212
cultural influences in, 111—112
cultural problems in, 246-247
design decisions within, 10-16
handling change within, 432-436
vision and, 285-286

organization of a persons day, 253
organization of work space, 117-118
out-of-the-box thinking, 216

p
paper filing, 255
paper prototypes

building, 393-396
of focus areas, 399, 405
using, 371-375

parallel work domains, 269-270
Participatory Design, 20, 54, 147, 370, 371 , 428
partitioning a system for implementation, 354-358
partnership principle

in Contextual Design, 37
in Contextual Inquiry, 51—56

Peapod User Environment, 344-345
pen, in brainstorming, 277-278
pervasive cultural influences and values, 109,

241-245
physical environment, 115-120. See also work

space (physical)
physical model (a work model), 115-120

consolidated, 249-256
consolidating, 184-190
for an office, 121

Index 465

for a university environment, 120
planning and strategy (project), 347-363

for a series of releases, 348-354
U E D a n d , 361

point of view of interviewer, 61
policies, cultural influences on, 111
policy manuals, 111
policy and values, identifying, 245
Post-it notes, 394

first-level, 160
grouping to reveal significance, 158-163
writing, 158-159

power, use and subversion of, 244
PowerPoint (Microsoft) main screen, 318
presentation, artifact, 106, 268
primary intents of users, 260
problem-solving, 257-259 , 298-299, 424-428
process awareness, creating, 436
process (design)

and Contextual Design, 393
designing, 415
keeping it open, 212
and redesign, 7 2 - 7 3
vision and, 285-286

process for invention, 220-221
process mapping, 85
products

coordinating a strategy for, 358-360
development organization cultural model, 113
inquiry for commercial, 69-71
inquiry for known, 69 -70

props, using, 153, 203-204
prototype interview

context for, 396-397
focus of, 400-401
interpretation of, 398-400
interpretation session for, 408
the interview, 403-406
introduction to, 402-403
looking for a hook, 402
and partnership with user, 397-398
running, 396-401
setup, 401-402
structure of, 401-407
time period to the first, 367
transition, 403

wrap-up, 406-407
prototypes, 365-411

as communication tools, 376-377
as design tools, 367-377
initial, 371
iterating with, 393-411
low-fidelity, 393
paper, 371-375 , 393-396
tests for, 401-402
test structure, 401

public relations, 245-248
pull-down menus, 388, 395
purchase request example, 266

Q
qualitative techniques, 33
Quality Assurance group, 12
quantitative techniques, 33

R
rapid iteration, 376
rat hole watcher, interpretation session, 133-134
recorder, session, 131-132, 136
redesigning work, 23-24 , 215-227 , 289-291
relationship models

apprenticeship, 42 -46
to avoid, 55-56
expert/novice, 55-56
explained, 41
finding, 42
guest/host, 56
interviewer/interviewee, 55
using existing, 41

releases, planning a series of, 348-354
representation of the market, single, 140-143
requirements gathering or elicitation, 17, 56
requirements specifications, 336-337 , 368-369
resistance to change, overcoming, 432-436
responsibilities of individuals

identifying, 165
listing, 164

retrospective account, eliciting, 49
reverse UED, 323-325 , 344-345
role isolation, 235-238

466 Index

roles
and communication flow, 94
and consolidating flow models, 163-170
finding central or key role, 239
mapping to individuals, 230
mapping to job functions, 242-243
played by head-of-household, 233
two roles played by a scientist, 231

role sharing, 234-235
role strain, 232-234
role structure, changing, 238
role switching, 230-232

s
scenarios, 369-370

marketing, 205-206
showing to management, 210

screen, representing in a paper prototype, 395
secondary intents (user), 260
secretarial work flow model, 92
seeing work and work structure, 79-136
segmenting the market

by demographics, 142
by work models, 143

sequence model (a work model), 96-101
consolidated, 256-264
consolidating, 171-178
distinctions, 99
for handling mail, 98

sequences, collecting during interview, 99-101
sequence triggers, 99, 101, 173-174
sequential thinking, 301, 313
series of releases, planning, 348-354
seven quality processes, 155
shared perspectives, 127
shared understanding of customer, 126-128
sharing session, 135-136
shipping focus areas together, 349
shipping UED, 349, 353
single representation of the market, 140-143
single view of customer, creating, 151—198
slide shows, showing to management, 209
slogan, team, 248
software development, 1-3
software engineering, 224

software life cycle, 221
Contextual Design in, 226-227
traditional, 222, 224

software process, 223—224
software specifications, developing, 336-337
space. See work space (physical)
speaker (sharing session), 135
specialized language, 83
specifications, requirements, 336-337 , 368-369
spreadsheets, 217-218
starting points, from brainstorming, 277
steps, eliminating unnecessary, 262-263
storyboards and storyboarding, 24, 287-289, 301 ,

391
building user environment from, 325—327
for getting help from system management, 290,

328
and UED, 331-335
U E D generated from, 333

strategic custom focus, maintaining, 430—432
strategies, customer, 197
structural thinking, 301, 313
structure of an artifact, 104
structure of a design team, 428-430
structure of a prototype interview, 401—407
structure of a system, 301—303

designing, 303-306
issues from prototype interview, 408
prototype test of, 401

structure of a UED, checking, 342-343
structure of work, 36-39 , 197-198, 229, 253-254
subintents (user), 259-260
summary vs. ongoing experience, 47 -48
surprises, in contextual interview, 63
system, meaning of (in this book), 1
system design, 293-363
system development process, 222
system development questions, 10-11
systemic response, need for, 18
systemic thinking, 19, 148-149, 421
system management

environment, 250-251
problem-solving, 257-259
storyboard, 290
vision for, 2 8 0 - 2 8 1 , 2 8 4

system partitioning for implementation, 354—358

Index 467

systems engineering, 224
system solution, 215
system structure, 301-306
system work model, 6, 295

coherence, 295-306
representing, 310-311

T
tabs in a tabbed dialog box, 383
task-oriented UIs, 311-312
tasks. See also work

and consolidated artifacts, 184
and consolidating sequence models, 171-178
extremely focused, 75
extremely long, 75
intermittent, 74
internal mental processes for, 75 -76
normal, 73 -74
uninterruptable, 74 -75
users' approach to, 261-262

task structure, 262-263
task triggers, 263
team. See design team
team principle of C D , 417, 420
team room, 203-204
team slogan, 248
technology

brainstorming, 276-277
taking advantage of new, 70-71
transformation of work by, 217-218
of work practice, 229

test cases, 341
test plans, starting, 362
tests and testing, 371-375

with customers, 24-25
for prototypes to perform, 402

thinking (design thinking), 420-421
about the consolidation process, 197-198
focusing through language, 82-83
forcing rethinking, 156
inductive, 151, 154, 197-198
out of the box, 216
principle of, 420-421
sequential and structural, 301 , 313
supporting, 19

systemic, 19, 148-149 ,421
about the whole organization, 215

time, better use of, 127—128
time sinks, overcoming, 435
tone, cultural, 111
tool palettes, in a paper prototype, 395
traditional software life cycle, 222, 224
transformation of work by technology, 217-218
transition process for ideas, 429
triggers, sequence, 99, 101, 173-174
triggers, task, 263

u
U E D . See User Environment Design (UED)
U E D functions, mapping to UI controls, 387-389
U E D structure, checking, 342-343
UI controls, mapping U E D functions to, 387-389
UIs (user intefaces)

design principles, 389-391
mapping UEDs to, 379-389
object-oriented vs. task-oriented, 311-312
for ordering supplies, 374
sketching, 288-289

understanding the customer, 27 -78
uninterruptable tasks, 74-75
university environment physical model, 120
unnecessary steps, eliminating, 262—263
upgrades (IT), inquiry for, 72
usability groups, 12 ,210-211
usability tests, 373
use cases, 369
user codes, use of, 134
User Environment Design (UED), 24, 306-345

for Claris Emailer UI, 308-309
for configuration management, 356-357
coordinating a product strategy, 358-360
defining a system with, 337-341
and dialog boxes, 338
driving concurrent implementation, 361-362
focus areas, 318-321
generated from a storyboard, 333
keeping work coherent, 314-315
leggy structure, 338
mapping to command-line UI, 383-386
mapping to UI, 379-389

468 Index

User Environment Design (UED) (continued)

mapping to windowing UI, 380-383
for part of a mail system, 307
and project cooperation, 360
prototype interview structural issues, 408
reverse, 323-325 , 344-345
and software specifications, 336-337
and storyboarding, 325-327 , 331-335
supporting configuration management,

350-351
walkthroughs, 341-343

user environment formalism, 311-315 , 322-323
users

approach to tasks, 261-262
meaning of (in this book), 2
verbal and nonverbal reactions of, 400

users' intents, 197
achieving more directly, 260
allowing for, 259-261
and sequence model interview, 101

user work model, explained, 6

v
values, identifying pervasive, 241-245
variations across customers, 152
view of customer, single, 151—198
VisiCalc, 217
vision, 23

creating, 277—282
creating a common direction, 282-284
directing current activity, 285
and marketing plans, 286
positive and negative parts of, 282-284
process and organization design, 285-286
realizing, 285-287
and system design, 286-287
for system management, 2 8 0 - 2 8 1 , 284

visioning process, 277-282

w-z
walking the affinity, 201-202, 275-276
walking the consolidated models, 202-203
walking the data, 275-276
walking the wall, 275-276
wasted steps, eliminating, 262-263

whole business, thinking about, 215
whole system design, 148-149
window contents, in a paper prototype, 396
windowing UI, mapping U E D to, 380-383
windows

focus areas as, 383
representing in a paper prototype, 395

withdrawal and return, 53, 299
WordPerfect, 217, 362-363
word processing, 8, 217-218 , 362-363
words, banning to force rethinking, 156
work. See also tasks; work models; work space

breaking up, 298-299
complexity of, 17-18
enabling a new way of working, 5-7
five faces of, 120-123
how people perform, 35
invisible aspects of, 36
keeping coherent, 295-306, 347
language of, 81 -87
meaning of (in this book), 32
redesigning, 289-291
seeing, 79—136
technology's transformation of, 217—218

work domains, parallel, 269-270
work-driven solutions, 6 -7
work flow, explained, 90—93
work modelers, 130—131
work modeling, explained, 22—23
work models, 23, 89 -123 . See also consolidated

work models
artifact model, 102-107
basing design on, 390
cultural model, 107-115
and diversity, 220
explained, 84
five types of, 86
flow model, 89-96
growth focus, 432
as a language for seeing work, 84—86
one set for multiple projects, 429
physical model, 115-120
revealing distinctions, 86 -87
sequence model, 96-101
stabilizing requirements, 146-148
system, 6

Index 469

user, 6
using as deliverables, 209

work practice. See also tasks; work
addressing coherent, 142
creating an optimal match to, 7—8
emergent, 375
mapping roles to functions, 242—243
technology of, 229

work redesign, 23-24 , 215-227
work space (physical)

constraints on, 249-256
for continuing team work, 13-14

design room, 203-204
determining usage of, 185

« division of, 117-118
impact of, 117-119
important factors in, 119
movement of people through, 118—119,

186 -189 ,254-255
organization of, 117-118
relationships between spaces, 254
team work in, 13—14

work structure, 36-39 , 197-198, 229, 253-254
work- vs. technology-driven solutions, 6 -7

This page intentionally left blank

About the Authors

Together, Karen Holtzblatt and Hugh
Beyer are founders of InContext Enter-
prises, specializing in process and prod-
uct design consulting. This company
works with major players in the shrink-
wrap software industry, high-tech hard-
ware design firms, and IT organizations,
helping them develop product designs
and product strategies and introducing
customer-centered design into their or-
ganizations.

Before founding InContext, Hugh
Beyer and Karen Holtzblatt collaborat-
ed on customer-centered design of integrated CASE systems and a
strategy for integration of proprietary and third-party tools. At this
time, they developed and refined the Contextual Design approach
through working with 20 development teams to implement aspects of
the integrated environment.

Hugh Beyer has designed and developed software for 16 years. In
Digital Equipment Corporation's customer service organization, he
managed the introduction and support of new information manage-
ment products and worked with engineers to understand the impact of
their products on customers.

He was a principal architect and developer for Digital's leading
entity-relationship repository system. After the successful introduction
of the repository product, Beyer pioneered the definition of object-
oriented repositories with a standard object model for integration and
later built a customizable windowing interface to this repository sys-
tem. He applied object-oriented analysis and design techniques to de-
fine one of the first repository-based I-CASE environments in the in-
dustry; the implementation of this strategy forms the basis for
Digital's current repository architecture.

About the Authors

As Digital's representative on national and international standards
bodies, Beyer introduced ATIS, an object-oriented repository standard
based on Digital's experience. He was primarily responsible for the
adoption of this proposal by ANSI for the national standard and as
the U.S. position to the ISO.

Karen Holtzblatt has designed products and processes for the past 10
years as a consultant to the computer industry and as an engineer at
Digital Equipment Corporation. She developed the Contextual In-
quiry approach to gathering field data on product use in a postdoctor-
al internship with John Whiteside and Digital's Software Usability
Engineering (SUE) group. She was subsequently hired as a consultant
to Digital to train the SUE group in the use of these processes for
product evaluation and development, allowing the SUE group to be-
come involved in the initial definition of new products, in addition to
enhancing their ability to affect the usability of already developed
products. She also consulted with Lotus, evaluating their documenta-
tion evaluation processes and making recommendations on using
Contextual Inquiry practices to improve their documentation.

Ms. Holtzblatt joined Lou Cohen's quality group at Digital, where
she worked on the VAX 9000 control panel, the VAX cluster console,
integrated CAD, system management products, transaction processing
products, and a representation of the work of Digital's High Perfor-
mance Systems. During this time she linked her field data-gathering
processes to quality processes such as QFD and Pugh Matrixes. She
also initiated the inclusion of customers in the QFD process. Today
starting the QFD process with Contextual Inquiry is institutionalized
within Digital.

As a member of the quality group, Karen Holtzblatt and Sandra
Jones developed the first Contextual Inquiry course, which has now
been delivered to thousands of people around the world. Contextual
Inquiry and work modeling have been taught for the last five years as
a Computer-Human Interaction (CHI) conference tutorial. Contex-
tual Design techniques have been presented as part of the design cur-
riculum at the Software Engineering Institute at CMU, Stanford, and
the University of California at Irvine.

Holtzblatt has over 15 years of teaching experience both in indus-
try and as an associate professor of psychology. She holds a doctorate
in applied psychology from the University of Toronto.

	Front Cover
	Contextual Design: Defining Customer-Centered Systems
	Copyright Page
	Acclaim for Contextual Design
	Foreword
	Table of Contents
	Preface
	ACKNOWLEDGMENTS
	CHAPTER 1. Introduction
	The challenges for design
	The challenge of design in organizations
	The challenge of design from data
	Contextual Design

	Part 1: Understanding the Customer
	CHAPTER 2. Gathering Customer Data
	Marketing doesn't provide design data
	The rocky partnership between IT and its clients
	Contextual Inquiry reveals hidden work structure

	CHAPTER 3. Principles of Contextual Inquiry
	The master/apprentice model
	The four principles of Contextual Inquiry
	The contextual interview structure

	CHAPTER 4. Contextual Inquiry in Practice
	Setting project focus
	Designing the interviewing situation
	Deciding who to interview
	Making it work

	Part 2: Seeing Work
	CHAPTER 5. A Language of Work
	Using language to focus thought
	Graphical languages give a whole picture
	Work models provide a language for seeing work
	Work models reveal the important distinctions

	CHAPTER 6. Work Models
	The flow model
	The sequence model
	The artifact model
	The cultural model
	The physical model
	The five faces of work

	CHAPTER 7. The Interpretation Session
	Building a shared understanding
	The structure of an interpretation session

	Part 3: Seeing across Customers
	CHAPTER 8. Consolidation
	Creating one representation of a market
	Facilitate the partnership between IT and customers
	Seeing the whole

	CHAPTER 9. Creating One View of the Customer
	The affinity diagram
	Consolidating flow models
	Consolidating sequence models
	Consolidating artifact models
	Consolidating physical models
	Consolidating cultural models
	The thought process of consolidation

	CHAPTER 10. Communicating to the Organization
	Communication techniques
	Tailoring the language to the audience
	Models manage the conversation

	Part 4: Innovation from Data
	CHAPTER 11. Work Redesign
	Customer data drives innovation
	Creative design incorporates diversity
	Contextual Design introduces a process for invention
	Work redesign as a distinct design step

	CHAPTER 12. Using Data to Drive Design
	The consolidated flow model
	The consolidated cultural model
	The consolidated physical model
	Consolidated sequence models
	Consolidated artifact models
	Using metaphors
	Using models for design

	CHAPTER 13. Design from Data
	Walking the data
	Priming the brain
	Creating a vision
	Creating a common direction
	Making the vision real
	Storyboards
	Redesigning work

	Part 5: System Design
	CHAPTER 14. System Design
	Keeping the user's work coherent
	The User Environment Design

	CHAPTER 15. The User Environment Design
	The reverse User Environment Design
	Building the User Environment from storyboards
	Defining a system with the User Environment Design
	User Environment Design walkthroughs

	CHAPTER 16. Project Planning and Strategy
	Planning a series of releases
	Partitioning a system for implementation
	Coordinating a product strategy
	Driving concurrent implementation

	Part 6: Prototyping
	CHAPTER 17. Prototyping as a Design Tool
	The difficulty of communicating a design
	Including customers in the design process
	Using paper prototypes to drive design
	Prototyping as a communication tool

	CHAPTER 18. From Structure to User Interface
	Using the User Environment Design to drive the UI
	A process to design the UI

	CHAPTER 19. Iterating with a Prototype
	Building a paper prototype
	Running a prototype interview
	The structure of an interview
	The interpretation session
	Iteration
	Completing a design

	Conclusion
	CHAPTER 20. Putting It into Practice
	The principles of Contextual Design
	Breaking up design responsibilities across groups
	Addressing different design problems
	Team structure
	Maintaining a strategic customer focus
	Handling organizational change
	Designing the design process

	Afterword
	Readings and Resources
	References
	Index
	About the Authors

