
1 Introduction to human-in-the-loop
machine learning

This chapter covers
Annotating unlabeled data to create training, validation, and
evaluation data
Sampling the most important unlabeled data items (active
learning)
Incorporating human–computer interaction principles into
annotation
Implementing transfer learning to take advantage of information
in existing models

Unlike robots in the movies, most of today’s artificial intelligence
(AI) cannot learn by itself; instead, it relies on intensive human
feedback. Probably 90% of machine learning applications today are
powered by supervised machine learning. This figure covers a wide
range of use cases. An autonomous vehicle can drive you safely
down the street because humans have spent thousands of hours
telling it when its sensors are seeing a pedestrian, moving vehicle,
lane marking, or other relevant object. Your in-home device knows
what to do when you say “Turn up the volume” because humans
have spent thousands of hours telling it how to interpret different
commands. And your machine translation service can translate
between languages because it has been trained on thousands (or
maybe millions) of human-translated texts.

Compared with the past, our intelligent devices are learning less
from programmers who are hardcoding rules and more from
examples and feedback given by humans who do not need to code.
These human-encoded examples—the training data—are used to
train machine learning models and make them more accurate for
their given tasks. But programmers still need to create the software
that allows the feedback from nontechnical humans, which raises one
of the most important questions in technology today: What are the
right ways for humans and machine learning algorithms to interact
to solve problems. After reading this book, you will be able to answer
this question for many uses that you might face in machine learning.

Annotation and active learning are the cornerstones of human-in-the-
loop machine learning. They specify how you elicit training data
from people and determine the right data to put in front of people
when you don’t have the budget or time for human feedback on all
your data. Transfer learning allows us to avoid a cold start, adapting
existing machine learning models to our new task rather than starting
at square one. We will introduce each of these concepts in this
chapter.

1.1 The basic principles of human-in-the-
loop machine learning
Human-in-the-loop machine learning is a set of strategies for
combining human and machine intelligence in applications that use
AI. The goal typically is to do one or more of the following:

Increase the accuracy of a machine learning model.
Reach the target accuracy for a machine learning model faster.
Combine human and machine intelligence to maximize accuracy.
Assist human tasks with machine learning to increase efficiency.

This book covers the most common active learning and annotation
strategies and how to design the best interface for your data, task,
and annotation workforce. The book gradually builds from simpler to

more complicated examples and is written to be read in sequence.
You are unlikely to apply all these techniques at the same time,
however, so the book is also designed to be a reference for each
specific technique.

Figure 1.1 shows the human-in-the-loop machine learning process
for adding labels to data. This process could be any labeling process:
adding the topic to news stories, classifying sports photos according
to the sport being played, identifying the sentiment of a social media
comment, rating a video on how explicit the content is, and so on. In
all cases, you could use machine learning to automate some of the
process of labeling or to speed up the human process. In all cases,
using best practices means implementing the cycle shown in figure
1.1: sampling the right data to label, using that data to train a model,
and using that model to sample more data to annotate.

Figure 1.1 A mental model of the human-in-the-loop process for predicting labels
on data

In some cases, you may want only some of the techniques. If you
have a system that backs off to a human when the machine learning
model is uncertain, for example, you would look at the relevant
chapters and sections on uncertainty sampling, annotation quality,
and interface design. Those topics still represent the majority of this
book even if you aren’t completing the “loop.”

This book assumes that you have some familiarity with machine
learning. Some concepts are especially important for human-in-the-
loop systems, including deep understanding of softmax and its
limitations. You also need to know how to calculate accuracy with
metrics that take model confidence into consideration, calculate
chance-adjusted accuracy, and measure the performance of machine
learning from a human perspective. (The appendix contains a
summary of this knowledge.)

1.2 Introducing annotation
Annotation is the process of labeling raw data so that it becomes
training data for machine learning. Most data scientists will tell you
that they spend much more time curating and annotating datasets
than they spend building the machine learning models. Quality
control for human annotation relies on more complicated statistics
than most machine learning models do, so it is important to take the
necessary time to learn how to create quality training data.

1.2.1 Simple and more complicated annotation
strategies
An annotation process can be simple. If you want to label social
media posts about a product as positive, negative, or neutral to
analyze broad trends in sentiment about that product, for example,
you could build and deploy an HTML form in a few hours. A simple
HTML form could allow someone to rate each social media post



according to the sentiment option, and each rating would become the
label on the social media post for your training data.

An annotation process can also be complicated. If you want to label
every object in a video with a bounding box, for example, a simple
HTML form is not enough; you need a graphical interface that allows
annotators to draw those boxes, and a good user experience might
take months of engineering hours to build.

1.2.2 Plugging the gap in data science knowledge
Your machine learning algorithm strategy and your data annotation
strategy can be optimized at the same time. The two strategies are
closely intertwined, and you often get better accuracy from your
models faster if you have a combined approach. Algorithms and
annotation are equally important components of good machine
learning.

All computer science departments offer machine learning courses,
but few offer courses on creating training data. At most, you might
find one or two lectures about creating training data among hundreds
of machine learning lectures across half a dozen courses. This
situation is changing, but slowly. For historical reasons, academic
machine learning researchers have tended to keep the datasets
constant and evaluated their research only in terms of different
algorithms.

By contrast with academic machine learning, it is more common in
industry to improve model performance by annotating more training
data. Especially when the nature of the data is changing over time
(which is also common), using a handful of new annotations can be
far more effective than trying to adapt an existing model to a new
domain of data. But far more academic papers focus on how to adapt
algorithms to new domains without new training data than on how to
annotate the right new training data efficiently.

Because of this imbalance in academia, I’ve often seen people in
industry make the same mistake. They hire a dozen smart PhDs who
know how to build state-of-the-art algorithms but don’t have
experience creating training data or thinking about the right
interfaces for annotation. I saw exactly this situation recently at one
of the world’s largest auto manufacturers. The company had hired a
large number of recent machine learning graduates, but it couldn’t
operationalize its autonomous vehicle technology because the new
employees couldn’t scale their data annotation strategy. The
company ended up letting that entire team go. During the aftermath, I
advised the company how to rebuild its strategy by using algorithms
and annotation as equally-important, intertwined components of
good machine learning.

1.2.3 Quality human annotation: Why is it hard?
To those who study it, annotation is a science that’s tied closely to
machine learning. The most obvious example is that the humans who
provide the labels can make errors, and overcoming these errors
requires surprisingly sophisticated statistics.

Human errors in training data can be more or less important,
depending on the use case. If a machine learning model is being used
only to identify broad trends in consumer sentiment, it probably
won’t matter whether errors propagate from 1% bad training data.
But if an algorithm that powers an autonomous vehicle doesn’t see
1% of pedestrians due to errors propagated from bad training data,
the result will be disastrous. Some algorithms can handle a little
noise in the training data, and random noise even helps some
algorithms become more accurate by avoiding overfitting. But
human errors tend not to be random noise; therefore, they tend to
introduce irrecoverable bias into training data. No algorithm can
survive truly bad training data.

For simple tasks, such as binary labels on objective tasks, the
statistics are fairly straightforward for deciding which label is correct
when different annotators disagree. But for subjective tasks, or even
objective tasks with continuous data, no simple heuristics exist for
deciding the correct label. Think about the critical task of creating
training data by putting a bounding box around every pedestrian
recognized by a self-driving car. What if two annotators have slightly
different boxes? Which box is the correct one? The answer is not
necessarily either box or the average of the two boxes. In fact, the
best way to aggregate the two boxes is to use machine learning.

One of the best ways to ensure quality annotations is to ensure you
have the right people making those annotations. Chapter 7 of this
book is devoted to finding, teaching, and managing the best
annotators. For an example of the importance of the right workforce
combined with the right technology, see the following sidebar.

Human insights and scalable machine learning equal production AI

Expert anecdote by Radha Ramaswami Basu

The outcome of AI is heavily dependent on the quality of the training
data that goes into it. A small UI improvement like a magic wand to
select regions in an image can realize large efficiencies when applied
across millions of data points in conjunction with well-defined
processes for quality control. An advanced workforce is the key
factor: training and specialization increase quality, and insights from
an expert workforce can inform model design in conjunction with
domain experts. The best models are created by a constructive,
ongoing partnership between machine and human intelligence.

We recently took on a project that required pixel-level annotation of
the various anatomic structures within a robotic coronary artery
bypass graft (CABG) video. Our annotation teams are not experts in
anatomy or physiology, so we implemented teaching sessions in
clinical knowledge to augment the existing core skills in 3D spatial
reasoning and precision annotation, led by a solutions architect who
is a trained surgeon. The outcome for our customer was successful
training and evaluation data. The outcome for us was to see people
from under-resourced backgrounds in animated discussion about
some of the most advanced uses of AI as they quickly became
experts in one of the most important steps in medical image analysis.

Radha Basu is founder and CEO of iMerit. iMerit uses technology
and an AI workforce consisting of 50% women and youth from
underserved communities to create advanced technology workers for
global clients. Radha previously worked at HP, took Supportsoft
public as CEO, and founded the Frugal Innovation Lab at Santa
Clara University.

1.3 Introducing active learning: Improving
the speed and reducing the cost of training
data
Supervised learning models almost always get more accurate with
more labeled data. Active learning is the process of deciding which
data to sample for human annotation. No one algorithm, architecture,
or set of parameters makes one machine learning model more
accurate in all cases, and no one strategy for active learning is
optimal across all use cases and datasets. You should try certain
approaches first, however, because they are more likely to be
successful for your data and task.

Most research papers on active learning focus on the number of
training items, but speed can be an even more important factor in
many cases. In disaster response, for example, I have often deployed
machine learning models to filter and extract information from
emerging disasters. Any delay in disaster response is potentially



critical, so getting a usable model out quickly is more important than
the number of labels that need to go into that model.

1.3.1 Three broad active learning sampling
strategies: Uncertainty, diversity, and random
Many active learning strategies exist, but three basic approaches
work well in most contexts: uncertainty, diversity, and random
sampling. A combination of the three should almost always be the
starting point.

Random sampling sounds the simplest but can be the trickiest. What
is random if your data is prefiltered, when your data is changing over
time, or if you know for some other reason that a random sample will
not be representative of the problem you are addressing? These
questions are addressed in more detail in the following sections.
Regardless of the strategy, you should always annotate some amount
of random data to gauge the accuracy of your model and compare
your active learning strategies with a baseline of randomly selected
items.

Uncertainty and diversity sampling go by various names in the
literature. They are often referred to as exploitation and exploration,
which are clever names that alliterate and rhyme, but are not
otherwise very transparent.

Uncertainty sampling is the set of strategies for identifying unlabeled
items that are near a decision boundary in your current machine
learning model. If you have a binary classification task, these items
will have close to a 50% probability of belonging to either label;
therefore, the model is called uncertain or confused. These items are
most likely to be wrongly classified, so they are the most likely to
result in a label that differs from the predicted label, moving the
decision boundary after they have been added to the training data and
the model has been retrained.

Diversity sampling is the set of strategies for identifying unlabeled
items that are underrepresented or unknown to the machine learning
model in its current state. The items may have features that are rare
in the training data, or they might represent real-world demographics
that are currently under-represented in the model. In either case, the
result can be poor or uneven performance when the model is applied,
especially when the data is changing over time. The goal of diversity
sampling is to target new, unusual, or underrepresented items for
annotation to give the machine learning algorithm a more complete
picture of the problem space.

Although the term uncertainty sampling is widely used, diversity
sampling goes by different names in different fields, such as
representative sampling, stratified sampling, outlier detection, and
anomaly detection. For some use cases, such as identifying new
phenomena in astronomical databases or detecting strange network
activity for security, the goal of the task is to identify the outlier or
anomaly, but we can adapt them here as a sampling strategy for
active learning.

Uncertainty sampling and diversity sampling have shortcomings in
isolation (figure 1.2). Uncertainty sampling might focus on one part
of the decision boundary, for example, and diversity sampling might
focus on outliers that are a long distance from the boundary. So the
strategies are often used together to find a selection of unlabeled
items that will maximize both uncertainty and diversity.

Figure 1.2 Pros and cons of different active learning strategies. Top left: The
decision boundary from a machine learning algorithm between items, with some
items labeled A and some labeled B. Top right: One possible result from
uncertainty sampling. This active learning strategy is effective for selecting
unlabeled items near the decision boundary. These items are the most likely to be
wrongly predicted, and therefore, the most likely to get a label that moves the
decision boundary. If all the uncertainty is in one part of the problem space,
however, giving these items labels will not have a broad effect on the model.

Bottom left: One possible result of diversity sampling. This active learning
strategy is effective for selecting unlabeled items in different parts of the problem
space. If the diversity is away from the decision boundary, however, these items
are unlikely to be wrongly predicted, so they will not have a large effect on the
model when a human gives them a label that is the same as the model predicted.
Bottom right: One possible result from combining uncertainty sampling and
diversity sampling. When the strategies are combined, items are selected that are
near diverse sections of the decision boundary. Therefore, we are optimizing the
chance of finding items that are likely to result in a changed decision boundary.

It is important to note that the active learning process is iterative. In
each iteration of active learning, a selection of items is identified and
receives a new human-generated label. Then the model is retrained
with the new items, and the process is repeated. Figure 1.3 shows
two iterations for selecting and annotating new items, resulting in a
changing boundary.

Figure 1.3 The iterative active learning process. Top left to bottom right: Two
iterations of active learning. In each iteration, items are selected along a diverse
selection of the boundary, which in turn causes the boundary to move after
retraining, resulting in a more accurate machine learning model. Ideally, we
requested human labels for the minimum number of items as part of our active
learning strategy. This request speeds the time to get an accurate model and
reduces the overall cost of human annotation.

Iteration cycles can be a form of diversity sampling in themselves.
Imagine that you used only uncertainty sampling, and sampled from
only one part of the problem space in an iteration. You might solve
all uncertainty in that part of the problem space; therefore, the next
iteration would concentrate somewhere else. With enough iterations,
you might not need diversity sampling at all. Each iteration from
uncertainty sampling would focus on a different part of the problem
space, and together, the iterations are enough to get a diverse sample
of items for training.

Implemented properly, active learning has this self-correcting
function: each iteration finds new aspects of the data that are best for



human annotation. If some part of your data space is inherently
ambiguous, however, each iteration could keep bringing you back to
the same part of the problem space with those ambiguous items. So it
is generally wise to consider both uncertainty and diversity sampling
strategies to ensure that you are not focusing all your labeling efforts
on a part of the problem space that your model might not be able to
solve.

Figures 1.2 and 1.3 give you good intuition about the process for
active learning. As anyone who has worked with high-dimensional or
sequence data knows, it is not always straightforward to identify
distance from a boundary or diversity. At least, the process is more
complicated than the simple Euclidean distance in figures 1.2 and
1.3. But the same idea still applies: we are trying to reach an accurate
model as quickly as possible with as few human labels as possible.

The number of iterations and the number of items that need to be
labeled within each iteration depend on the task. When you’re
working in adaptive machine+human translation, a single translated
sentence is enough training data to require the model to update,
ideally within a few seconds. It is easy to see why from a user-
experience perspective. If a human translator corrects the machine
prediction for some word, but the machine doesn’t adapt quickly, the
human may need to (re)correct that machine output hundreds of
times. This problem is common when you’re translating words that
are highly context-specific. You may want to translate a person’s
name literally in a news article, for example, but translate it into a
localized name in a work of fiction. The user experience will be bad
if the software keeps making the same mistake so soon after a human
has corrected it, because we expect recency to help with adaptation.

On the technical side, of course, it is much more difficult to adapt a
model quickly. Consider large machine translation models. Currently,
it takes a week or more to train these models. From the experience of
the translator, a software system that can adapt quickly is employing
continuous learning. In most use cases I’ve worked on, such as
identifying the sentiment in social media comments, I needed to
iterate only every month or so to adapt to new data. Although few
applications have real-time adaptive machine learning today, more
are moving this way.

1.3.2 What is a random selection of evaluation
data?
It is easy to say that you should always evaluate on a random sample
of held-out data, but in practical terms, it is rarely easy to ensure that
you have a truly random sample of data. If you prefiltered the data
that you are working with by keyword, time, or some other factor,
you already have a nonrepresentative sample. The accuracy of that
sample is not necessarily indicative of the accuracy on the data
where your model will be deployed.

I’ve seen people use the well-known ImageNet dataset and apply
machine learning models to a broad selection of data. The canonical
ImageNet dataset has 1,000 labels, each of which describes the
category of that image, such as “Basketball,” “Taxi,” or
“Swimming.” The ImageNet challenges evaluated held-out data from
that dataset, and systems achieved near-human-level accuracy within
that dataset. If you apply those same models to a random selection of
images posted on a social media platform, however, accuracy
immediately drops to something like 10%.

In most applications of machine learning, the data will change over
time as well. If you’re working with language data, the topics that
people talk about will change over time, and the languages
themselves will innovate and evolve. If you’re working with
computer vision data, the types of objects that you encounter will
change over time. Equally important, the images themselves will
change based on advances and changes in camera technology.

If you can’t define a meaningful random set of evaluation data, you
should try to define a representative evaluation dataset. If you define
a representative dataset, you are admitting that a truly random
sample isn’t possible or meaningful for your dataset. It is up to you
to define what is representative for your use case, based on how you
are applying the data. You may want to select data points for every
label that you care about, a certain number from every time period or
a certain number from the output of a clustering algorithm to ensure
diversity. (I discuss this topic more in chapter 4.)

You may also want to have multiple evaluation datasets that are
compiled through different criteria. One common strategy is to have
one dataset drawn from the same data as the training data and at least
one out-of-domain evaluation dataset drawn from a different source.
Out-of-domain datasets are often drawn from different types of
media or different time periods. If all the training data for a natural
language processing (NLP) task comes from historical news articles,
for example, an out-of-domain dataset might come from recent social
media data. For most real-world applications, you should use an out-
of-domain evaluation dataset, which is the best indicator of how well
your model is truly generalizing to the problem and not simply
overfitting quirks of that particular dataset. This practice can be
tricky with active learning, however, because as soon as you start
labeling that data, it is no longer out-of-domain. If doing so is
practical, I recommend that you keep an out-of-domain dataset to
which you don’t apply active learning. Then you can see how well
your active learning strategy is generalizing the problem, not simply
adapting and overfitting to the domains that it encounters.

1.3.3 When to use active learning
You should use active learning when you can annotate only a small
fraction of your data and when random sampling will not cover the
diversity of data. This recommendation covers most real-world
scenarios, as the scale of the data becomes an important factor in
many use cases.

A good example is the amount of data present in videos. Putting a
bounding box around every object in every frame of a video, for
example, would be time-consuming. Suppose that this video is of a
self-driving car on a street with about 20 objects you care about
(cars, pedestrians, signs, and so on). At 30 frames a second, that’s 30
frames * 60 seconds * 20 objects, so you would need to create
36,000 boxes for one minute of data! Even the fastest human
annotator would need at least 12 hours to annotate one minute’s
worth of data.

If we run the numbers, we see how intractable this problem is. In the
United States, people drive an average of 1 hour per day, which
means that people in the United States drive 95,104,400,000 hours
per year. Soon, every car will have a video camera on the front to
assist with driving. So 1 year’s worth of driving in the United States
alone would take 60,000,000,000 (60 trillion) hours to annotate.
There are not enough people on Earth to annotate the videos of
drivers in the United States today, even if the rest of the world did
nothing but annotate data all day to make U.S. drivers safer.

So any data scientists at an autonomous-vehicle company needs to
answer a variety of questions about the annotation process. Is every
nth frame in a video OK? Can we sample the videos so that we don’t
have to annotate them all? Are there ways to design an interface for
annotation to speed the process?

The intractability of annotation is true in most situations. There will
be more data to annotate than there is budget or time to put each data
point in front of a human. That’s probably why the task is using
machine learning in the first place. If you have the budget and time
to annotate all the data points manually, you probably don’t need to
automate the task.



You don’t need active learning in every situation, although human-
in-the-loop learning strategies might still be relevant. In some cases,
humans are required by law to annotate every data point, such as a
court-ordered audit that requires a human to look at every
communication within a company for potential fraud. Although
humans will ultimately need to look at every data point, active
learning can help them find the fraud examples faster and determine
the best user interface to use. It can also identify potential errors with
human annotations. In fact, this process is how many audits are
conducted today.

There are also some narrow use cases in which you almost certainly
don’t need active learning. If you are monitoring equipment in a
factory with consistent lighting, for example, it should be easy to
implement a computer vision model to determine whether a given
piece of machinery is on or off from a light or switch on that
machine. As the machinery, lighting, camera, and the like are not
changing over time, you probably don’t need to use active learning to
keep getting training data after your model has been built. These use
cases are rare, however. Fewer than 1% of the use cases that I have
encountered in industry have no use for more training data.

Similarly, there might be use cases in which your baseline model is
accurate enough for your business use case or the cost of more
training data exceeds any value that a more accurate model might
provide. This criterion could also be the stopping point for active
learning iterations.

1.4 Machine learning and human–computer
interaction
For decades, a lot of smart people failed to make human translation
faster and more accurate with the help of machine translation. It
seems obvious that it should be possible to combine human
translation and machine translation. As soon as a human translator
needs to correct one or two errors in a sentence from machine
translation output, however, it would be quicker for the translator to
retype the whole sentence from scratch. Using the machine
translation sentence as a reference when translating makes little
difference in speed, and unless the human translator takes extra care,
they will end up perpetuating errors in the machine translation,
making their translation less accurate.

The eventual solution to this problem was not in the accuracy of the
machine translation algorithms, but in the user interface. Instead of
requiring human translators to retype whole sentences, modern
translation systems let them use the same kind of predictive text that
has become common in phones and (increasingly) in email and
document composition tools. Human translators type translations as
they always have, pressing Enter or Tab to accept the next word in
the predicted translation, increasing their overall speed every time
the machine translation prediction is correct. So the biggest
breakthrough was in human–computer interaction, not the underlying
machine learning algorithm.

Human–computer interaction is an established field in computer
science that has recently become especially important for machine
learning. When you are building interfaces for humans to create
training data, you are drawing on a field that is at the intersection of
cognitive science, social sciences, psychology, user-experience
design, and several other fields.

1.4.1 User interfaces: How do you create training
data?
Often, a simple web form is enough to collect training data. The
human–computer interaction principles that underlie interaction with
web forms are equally simple: people are accustomed to web forms

because they see them all day. The forms are intuitive because a lot
of smart people worked on and refined HTML forms. You are
building on these conventions: people know how a simple HTML
form works, so you don’t need to educate them. On the other hand,
breaking these conventions would confuse people, so you are
constrained to expected behavior. You might have some idea that
dynamic text could speed some task, but that convention could
confuse more people than it helps.

The simplest interface—binary responses—is also the best for
quality control. If you can simplify or break your annotation project
into binary tasks, it is a lot easier to design an intuitive interface and
to implement the annotation quality control features covered in
chapters 8–11.

When you are dealing with more complicated interfaces, the
conventions also become more complicated. Imagine that you are
asking people to put polygons around certain objects in an image,
which is a common use case for autonomous-vehicle companies.
What modalities would an annotator expect? Would they expect
freehand, lines, paintbrushes, smart selection by color/region, or
other selection tools? If people are accustomed to working on images
in programs such as Adobe Photoshop, they might expect the same
functionality when annotating images. In the same way that you are
building on and constrained by people’s expectations for web forms,
you are also constrained by their expectations for selecting and
editing images. Unfortunately, those expectations might require
hundreds of hours of coding to build if you are offering full-featured
interfaces.

For anyone who is undertaking a repetitive task such as creating
training data, moving a mouse is inefficient and should be avoided if
possible. If the entire annotation process can happen on a keyboard,
including the annotation itself and any form submissions or
navigations, the rhythm of the annotators will be greatly improved. If
you have to include a mouse, you should be getting rich annotations
to make up for the slower inputs.

Some annotation tasks have specialized input devices. People who
transcribe speech to text often use foot pedals to navigate backward
and forward in time in the audio recording. The process allows them
to leave their hands on the keyboard. Navigating a recording with
their feet is much more efficient than navigating the recording with a
mouse.

Exceptions such as transcription aside, the keyboard is still king.
Most annotation tasks haven’t been popular for as long as
transcription and therefore haven’t developed specialized input
devices. For most tasks, using a keyboard on a laptop or PC is faster
than using the screen of a tablet or phone. It’s not easy to type on a
flat surface while keeping your eyes on inputs, so unless a task is a
simple binary selection task or something similar, phones and tablets
are not suited to high-volume data annotation.

1.4.2 Priming: What can influence human
perception?
To get accurate training data, you have to take into account the focus
of the human annotator, their attention span, and contextual effects
that might cause them to make errors or to otherwise change their
behavior. Consider a great example from linguistics research. In a
study called “Stuffed toys and speech perception”
(https://doi.org/10.1515/ling.2010.027), people were asked to
distinguish between Australian and New Zealand accents.
Researchers placed a stuffed toy kiwi bird or kangaroo (iconic
animals for those countries) on a shelf in the room where participants
undertook the study. The people who ran the study did not mention
the stuffed toy to the participants; the toy was simply in the
background. Incredibly, people interpreted an accent as sounding

https://doi.org/10.1515/ling.2010.027
https://doi.org/10.1515/ling.2010.027


more New Zealand-like when a kiwi bird was present and more
Australia-like when a kangaroo was present. Given this fact, it is
easy to imagine that if you are building a machine learning model to
detect accents (perhaps you are working on a smart home device that
you want to work in as many accents as possible), you need to take
context into account when collecting training data.

When the context or sequence of events can influence human
perception, this phenomenon is known as priming The most
important type in creating training data is repetition priming, which
occurs when the sequence of tasks can influence someone’s
perception. If an annotator is labeling social media posts for
sentiment, for example, and they encounter 99 negative sentiment
posts in a row, they are more likely to make an error by labeling the
hundredth post as negative when it is positive. The post may be
inherently ambiguous (such as sarcasm) or a simple error caused by
an annotator’s fading attention during repetitive work. In chapter 11,
I talk about the types of priming you need to control for.

1.4.3 The pros and cons of creating labels by
evaluating machine learning predictions
One way to combine machine learning and ensure quality
annotations is to use a simple binary-input form to have people
evaluate a model prediction and confirm or reject that prediction.
This technique can be a nice way to turn a more complicated task
into a binary annotation task. You could ask someone whether a
bounding box around an object is correct as a simple binary question
that doesn’t involve a complicated editing/selection interface.
Similarly, it is easier to ask an annotator whether some word is a
location in a piece of text than it is to provide an interface to
efficiently annotate phrases that are locations in free text.

When you do so, however, you run the risk of focusing on localized
model uncertainty and missing important parts of the problem space.
Although you can simplify the interface and annotation accuracy
evaluation by having humans evaluate the predictions of machine
learning models, you still need a diversity strategy for sampling,
even if that strategy is merely ensuring that a random selection of
items is also available.

1.4.4 Basic principles for designing annotation
interfaces
Based on what I’ve covered so far, here are some basic principles for
designing annotation interfaces. I’ll go into more detail on these
principles throughout the book:

Cast your problems as binary choices wherever possible.
Ensure that expected responses are diverse to avoid priming.
Use existing interaction conventions.
Allow keyboard-driven responses.

1.5 Machine-learning-assisted humans vs.
human-assisted machine learning
Human-in-the-loop machine learning can have two distinct goals:
making a machine learning application more accurate with human
input and improving a human task with the aid of machine learning.
The two goals are sometimes combined, and machine translation is a
good example. Human translation can be made faster by using
machine translation to suggest words or phrases that a human can
choose to accept or reject, much as your smartphone predicts the next
word as you are typing. This task is a machine-learning-assisted
human processing task. I’ve also worked with customers who use
machine translation when human translation would be too expensive.
Because the content is similar across the human- and machine-

translated data, the machine translation system gets more accurate
over time from the data that is human-translated. These systems are
hitting both goals, making the humans more efficient and making the
machines more accurate.

Search engines are another great example of human-in-the-loop
machine learning. People often forget that search engines are a form
of AI despite being so ubiquitous for general search and for specific
use cases such as e-commerce and navigation (online maps). When
you search for a page online and click the fourth link that comes up
instead of the first link, for example, you are probably training that
search engine (information retrieval system) that the fourth link
might be a better top response for your search query. There is a
common misconception that search engines are trained only on
feedback from end users. In fact, all the major search engines employ
thousands of annotators to evaluate and tune their search engines.
Evaluating search relevance is the single largest use case for human
annotation in machine learning. Although there has been a recent rise
in popularity of computer vision use cases, such as autonomous
vehicles, and speech use cases, such as in-home devices and
smartphones, search relevance is still the largest use case for
professional human annotation.

However they appear at first glance, most human-in-the-loop
machine learning tasks have some element of both machine-learning-
assisted humans and human-assisted machine learning, so you need
to design for both.

1.6 Transfer learning to kick-start your
models
You don’t need to start building your training data from scratch in
most cases. Often, existing datasets are close to what you need. If
you are creating a sentiment analysis model for movie reviews, for
example, you might have a sentiment analysis dataset from product
reviews that you can start with and then adapt to your use cases. This
process—taking a model from one use case and adapting it to
another—is known as transfer learning.

Recently, there has been a large increase in the popularity of adapting
general pretrained models to new, specific use cases. In other words,
people are building models specifically to be used in transfer learning
for many use cases. These models are often referred to as pretrained
models.

Historically, transfer learning has involved feeding the outputs of one
process into another. An example in NLP might be

General part-of-speech tagger > Syntactic parser > Sentiment
analysis tagger

Today, transfer learning typically means

Retraining part of a neural model to adapt to a new task (pretrained
models) or using the parameters of one neural model as inputs to
another

Figure 1.4 shows an example of transfer learning. A model can be
trained on one set of labels and then retrained on another set of labels
by keeping the architecture the same and freezing part of the model,
retraining only the last layer in this case.

Figure 1.4 An example of transfer learning. A model was built to predict a label
as “A,” “B,” “C,” or “D.” Retraining the last layer of the model and using far
fewer human-labeled items than if we were training a model from scratch, the
model is able to predict labels “Y” and “Z.”



1.6.1 Transfer learning in computer vision
Transfer learning has seen the most progress recently in computer
vision. A popular strategy is to start with the ImageNet dataset and
build a model from the millions of examples to classify the 1,000
labels: sports, birds, human-made objects, and so on.

To learn to classify different types of sports, animals, and objects, the
machine learning model is learning about the types of textures and
edges that are needed to distinguish 1,000 types of items in images.
Many of these textures and edges are more general than the 1,000
labels and can be used elsewhere. Because all the textures and edges
are learned in the intermediate layers of the network, you can retrain
only the last layer on a new set of labels. You may need only a few
hundred or a few thousand examples for each new label, instead of
millions, because you are already drawing on millions of images for
the textures and edges. ImageNet has seen high success when people
have retrained the final layer to new labels with little data, including
objects such as cells in biology and geographic features from satellite
views.

It is also possible to retrain several layers instead of the last one and
to add more layers to the model from which you are transferring.
Transfer learning can be used with many architectures and
parameters to adapt one model to a new use case, but with the same
goal of limiting the number of human labels needed to build an
accurate model on new data.

Computer vision has been less successful to date for moving beyond
image labeling. For tasks such as detecting objects within an image,
it is difficult to create transfer learning systems that can adapt from
one type of object to another. The problem is that objects are being
detected as collections of edges and textures rather than as whole
objects. Many people are working on the problem, however, so there
is no doubt that breakthroughs will occur.

1.6.2 Transfer learning in NLP
The big push for pretrained models for NLP is even more recent than
for computer vision. transfer learning of this form has become
popular for NLP only in the past two or three years, so it is one of the
most cutting-edge technologies covered in this text, but it also might
become out of date quickly.

ImageNet-like adaptation does not work for language data. Transfer
learning for one sentiment analysis dataset to another sentiment
analysis dataset provides an accuracy increase of only ~2–3%.
Models that predict document-level labels don’t capture the breadth

of human language to the extent that equivalent computer vision
models capture textures and edges. But you can learn interesting
properties of words by looking at the contexts in which they occur
regularly. Words such as doctor and surgeon might occur in similar
contexts, for example. Suppose that you found 10,000 contexts in
which any English word occurs, looking at the set of words before
and after. You can see how likely the word doctor is to occur in each
of these 10,000 contexts. Some of these contexts will be medical-
related, so doctor will have a high score in those contexts. But most
of the 10,000 contexts will not be medical-related, so doctor will
have a low score in those contexts. You can treat these 10,000 scores
like a 10,000-long vector. The word surgeon is likely to have a vector
similar to that of doctor because it often occurs in the same context.

The concept of understanding a word by its context is old and forms
the basis of functional theories of linguistics:

You shall know a word by the company it keeps (Firth, J. R.
1957:11).

Strictly, we need to go below the word to get to the most important
information. English is an outlier in that words tend to make good
atomic units for machine learning. English allows for complex words
such as un-do-ing it is obvious why we would want to interpret the
separate parts (morphemes), but English does this much more rarely
than a typical language. What English expresses with word order,
such as subject-verb-object, is more frequently expressed with
affixes that English limits to things such as present and past tense
and singular/plural distinctions. So for machine learning tasks that
are not biased toward a privileged language such as English, which is
an outlier, we need to model subwords.

Firth would appreciate this fact. He founded England’s first
linguistics department at SOAS, where I worked for two years
helping record and preserve endangered languages. It was clear from
my time there that the full breadth of linguistic diversity means that
we need more fine-grained features than words alone. Human-in-the-
loop machine learning methods are necessary if we are going to
adapt the world’s machine-learning capabilities to as many of the
7,000 world languages as possible.

When transfer learning had its recent breakthrough moment, it
followed the principle of understanding words (or word segments) in
context. We can get millions of labels for our models for free if we
predict the word from its context:

My ___ is cute. He ___ play-ing

No human labeling is required. We can remove some percentage of
the words in raw text and then turn the remaining text into a
predictive machine-learning task. As you can guess, the first blank
word might be dog, puppy, or kitten, and the second blank word is
likely to be is or was As with surgeon and doctor we can predict
words from context.

Unlike the early example in which transfer learning from one type of
sentiment to another failed, these kinds of pretrained models have
been widely successful. With only minor tuning from a model that
predicts a word in context, it is possible to build state-of-the-art
systems with small amounts of human labeling for language tasks
such as question answering, sentiment analysis, and textual
entailment. Unlike computer vision, transfer learning is quickly
becoming ubiquitous for complicated NLP tasks such as
summarization and translation.

The pretrained models are not complicated. The most sophisticated
ones today are trained to predict a word in context, the order of
words in a sentence, and the order of sentences. From that baseline
model of three types of predictions that are inherent in the data, we
can build almost any NLP use case with a head start. Because word

https://livebook.manning.com/book/human-in-the-loop-machine-learning/chapter-1/


Check your understanding
What is an example of transfer learning in natural language
processing (NLP)?
What is the criterion for stopping active learning iterations?
The criterion for stopping active learning iterations is when the cost
of more training data exceeds any value that a more accurate model
might provide.
What is an example of a human-in-the-loop machine learning task?
Search engine relevance evaluation is an example of a human-in-the-
loop machine learning task.
What is the main breakthrough that allowed for the combination of
human translation and machine translation?
The main breakthrough that allowed for the combination of human
translation and machine translation was human-computer interaction.
What are the principles that underlie interaction with web forms?
The principles that underlie interaction with web forms are to use
existing interaction conventions.
What is the main purpose of transfer learning for NLP?
The main purpose of transfer learning for NLP is to predict words in
context.
What is an example of a human-in-the-loop machine learning task?
Search engine relevance evaluation is an example of a human-in-the-
loop machine learning task.
What is transfer learning?
Transfer learning is adapting a model trained from one task to
another.

order and sentence order are inherent properties of the documents,
the pretrained models don’t need human labels. They are still built
like supervised machine learning tasks, but the training data is
generated for free. The models might be asked to predict one in every
ten words that have been removed from the data and to predict when
certain sentences follow each other in the source documents,
providing a powerful head start before any human labels are required
for your task.

Pretrained models, however, are limited by how much unlabeled text
is available. Much more unlabeled text is available in English than in
other languages, even when you take the overall frequency of
different languages into account. There will be cultural biases, too.
The example My dog is cute might appear frequently in online text,
which is the main source of data for pretrained models. But not
everyone has a dog as a pet. When I briefly lived in the Amazon to
study the Matsés language, monkeys were popular pets. The English
phrase My monkey is cute rarely appears online, and the Matsés
equivalent Chuna bëdambo ikek doesn’t occur at all. Word vectors
and the contextual models in pretrained systems do allow multiple
meanings to be expressed by one word, so they could capture both
dog and monkey. in this context, but they are still biased toward the
data on which they are trained, and the monkey context is unlikely to
occur in large volumes in any language. We need to be aware that
pretrained systems will tend to amplify cultural biases.

Pretrained models still require additional human labels to achieve
accurate results in their tasks, so transfer learning does not change
our general architecture for human-in-the-loop machine learning. It
can give us a substantial head start in labeling, however, which can
influence the choice of active learning strategy that we use to sample
additional data items for human annotation and even the interface by
which humans provide that annotation.

Transfer learning also forms the basis of some of the advanced active
learning strategies discussed in chapter 5 and the advanced data
annotation and augmentation strategies in chapter 9.

1.7 What to expect in this text
To think about how the pieces of this text fit together, it can be useful
to think of the topics in terms of a knowledge quadrant (figure 1.5).

Figure 1.5 A machine learning knowledge quadrant, covering the topics in this
book and expressing them in terms of what is known and unknown for your
machine learning models

The four quadrants are

Known known—What your machine learning model can
confidently and accurately do today. This quadrant is your model
in its current state.
Known unknown—What your machine learning model cannot
confidently do today. You can apply uncertainty sampling to these
items.
Unknown known—Knowledge within pretrained models that can
be adapted to your task. Transfer learning allows you to use this

knowledge.
Unknown unknown—Gaps in your machine learning model. You
can apply diversity sampling to these items.

The columns and rows are meaningful too, with the rows capturing
knowledge of your model in its current state and the columns
capturing the type of solutions needed:

The top row captures your model’s knowledge.
The bottom row captures knowledge outside your model.
The left column can be addressed by the right algorithms.
The right column can be addressed by human interaction.

This text covers a wide range of technologies, so it might help to
keep this figure handy to know where everything fits in.

The book has cheat sheets at the end of the first few chapters as a
quick reference for the major concepts that were covered. You can
keep these cheat sheets handy while reading later chapters.

Summary
The broader human-in-the-loop machine learning architecture is
an iterative process combining human and machine components.
Understanding these components explains how the parts of this
book come together.
You can use some basic annotation techniques to start creating
training data. Understanding these techniques ensures that you are
getting annotations accurately and efficiently.
The two most common active learning strategies are uncertainty
sampling and diversity sampling. Understanding the basic
principles of each type helps you strategize about the right
combination of approaches for your particular problems.
Human–computer interaction gives you a framework for
designing the user-experience components of human-in-the-loop
machine learning systems.
Transfer learning allows us to adapt models trained from one task
to another and build more accurate models with fewer
annotations.

https://livebook.manning.com/book/human-in-the-loop-machine-learning/chapter-1/1#73
https://livebook.manning.com/book/human-in-the-loop-machine-learning/chapter-1/1#76
https://livebook.manning.com/book/human-in-the-loop-machine-learning/chapter-1/1#77
https://livebook.manning.com/book/human-in-the-loop-machine-learning/chapter-1/1#79
https://livebook.manning.com/book/human-in-the-loop-machine-learning/chapter-1/1#122
https://livebook.manning.com/book/human-in-the-loop-machine-learning/chapter-1/1#76
https://livebook.manning.com/book/human-in-the-loop-machine-learning/chapter-1/1#113
https://livebook.manning.com/book/human-in-the-loop-machine-learning/chapter-1/
https://livebook.manning.com/book/human-in-the-loop-machine-learning/chapter-1/
https://livebook.manning.com/book/human-in-the-loop-machine-learning/chapter-1/
https://livebook.manning.com/book/human-in-the-loop-machine-learning/chapter-1/
https://livebook.manning.com/book/human-in-the-loop-machine-learning/chapter-1/

